.. only:: html
.. note::
:class: sphx-glr-download-link-note
Click :ref:`here ` to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_04_glm_first_level_plot_adhd_dmn.py:
Default Mode Network extraction of AHDH dataset
===============================================
This example shows a full step-by-step workflow of fitting a GLM to data
extracted from a seed on the Posterior Cingulate Cortex and saving the results.
More specifically:
1. A sequence of fMRI volumes are loaded.
2. A design matrix with the Posterior Cingulate Cortex seed is defined.
3. A GLM is applied to the dataset (effect/covariance, then contrast estimation).
4. The Default Mode Network is displayed.
.. code-block:: default
import numpy as np
from nilearn import datasets, plotting
from nilearn.input_data import NiftiSpheresMasker
from nilearn.glm.first_level import FirstLevelModel
from nilearn.glm.first_level import make_first_level_design_matrix
Prepare data and analysis parameters
-------------------------------------
Prepare the data.
.. code-block:: default
adhd_dataset = datasets.fetch_adhd(n_subjects=1)
# Prepare timing
t_r = 2.
slice_time_ref = 0.
n_scans = 176
# Prepare seed
pcc_coords = (0, -53, 26)
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
/home/varoquau/dev/nilearn/nilearn/datasets/func.py:438: VisibleDeprecationWarning: Reading unicode strings without specifying the encoding argument is deprecated. Set the encoding, use None for the system default.
phenotypic = np.genfromtxt(phenotypic, names=True, delimiter=',',
Estimate contrasts
------------------
Specify the contrasts.
.. code-block:: default
seed_masker = NiftiSpheresMasker([pcc_coords], radius=10, detrend=True,
standardize=True, low_pass=0.1,
high_pass=0.01, t_r=2.,
memory='nilearn_cache',
memory_level=1, verbose=0)
seed_time_series = seed_masker.fit_transform(adhd_dataset.func[0])
frametimes = np.linspace(0, (n_scans - 1) * t_r, n_scans)
design_matrix = make_first_level_design_matrix(frametimes, hrf_model='spm',
add_regs=seed_time_series,
add_reg_names=["pcc_seed"])
dmn_contrast = np.array([1] + [0] * (design_matrix.shape[1] - 1))
contrasts = {'seed_based_glm': dmn_contrast}
Perform first level analysis
----------------------------
Setup and fit GLM.
.. code-block:: default
first_level_model = FirstLevelModel(t_r=t_r, slice_time_ref=slice_time_ref)
first_level_model = first_level_model.fit(run_imgs=adhd_dataset.func[0],
design_matrices=design_matrix)
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
/home/varoquau/dev/nilearn/nilearn/glm/first_level/first_level.py:61: UserWarning: Mean values of 0 observed.The data have probably been centered.Scaling might not work as expected
warn('Mean values of 0 observed.'
Estimate the contrast.
.. code-block:: default
print('Contrast seed_based_glm computed.')
z_map = first_level_model.compute_contrast(contrasts['seed_based_glm'],
output_type='z_score')
# Saving snapshots of the contrasts
filename = 'dmn_z_map.png'
display = plotting.plot_stat_map(z_map, threshold=3.0, title='Seed based GLM',
cut_coords=pcc_coords)
display.add_markers(marker_coords=[pcc_coords], marker_color='g',
marker_size=300)
display.savefig(filename)
print("Save z-map in '{0}'.".format(filename))
.. image:: /auto_examples/04_glm_first_level/images/sphx_glr_plot_adhd_dmn_001.png
:alt: plot adhd dmn
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Contrast seed_based_glm computed.
Save z-map in 'dmn_z_map.png'.
Generating a report
-------------------
It can be useful to quickly generate a
portable, ready-to-view report with most of the pertinent information.
This is easy to do if you have a fitted model and the list of contrasts,
which we do here.
.. code-block:: default
from nilearn.reporting import make_glm_report
report = make_glm_report(first_level_model,
contrasts=contrasts,
title='ADHD DMN Report',
cluster_threshold=15,
min_distance=8.,
plot_type='glass',
)
We have several ways to access the report:
.. code-block:: default
# report # This report can be viewed in a notebook
# report.save_as_html('report.html')
# report.open_in_browser()
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 19.524 seconds)
.. _sphx_glr_download_auto_examples_04_glm_first_level_plot_adhd_dmn.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: binder-badge
.. image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/04_glm_first_level/plot_adhd_dmn.ipynb
:width: 150 px
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: plot_adhd_dmn.py `
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: plot_adhd_dmn.ipynb `
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery `_