.. only:: html
.. note::
:class: sphx-glr-download-link-note
Click :ref:`here ` to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_03_connectivity_plot_sphere_based_connectome.py:
Extract signals on spheres and plot a connectome
==============================================================
This example shows how to extract signals from spherical regions.
We show how to build spheres around user-defined coordinates, as well as
centered on coordinates from the Power-264 atlas [1], and the Dosenbach-160
atlas [2].
**References**
[1] Power, Jonathan D., et al. "Functional network organization of the
human brain." Neuron 72.4 (2011): 665-678.
[2] Dosenbach N.U., Nardos B., et al. "Prediction of individual brain maturity
using fMRI.", 2010, Science 329, 1358-1361.
We estimate connectomes using two different methods: **sparse inverse
covariance** and **partial_correlation**, to recover the functional brain
**networks structure**.
We'll start by extracting signals from Default Mode Network regions and
computing a connectome from them.
Retrieve the brain development fmri dataset
-------------------------------------------
We are going to use a subject from the development functional
connectivity dataset.
.. code-block:: default
from nilearn import datasets
dataset = datasets.fetch_development_fmri(n_subjects=10)
# print basic information on the dataset
print('First subject functional nifti image (4D) is at: %s' %
dataset.func[0]) # 4D data
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
First subject functional nifti image (4D) is at: /home/varoquau/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz
Coordinates of Default Mode Network
------------------------------------
.. code-block:: default
dmn_coords = [(0, -52, 18), (-46, -68, 32), (46, -68, 32), (1, 50, -5)]
labels = [
'Posterior Cingulate Cortex',
'Left Temporoparietal junction',
'Right Temporoparietal junction',
'Medial prefrontal cortex',
]
Extracts signal from sphere around DMN seeds
----------------------------------------------
We can compute the mean signal within **spheres** of a fixed radius
around a sequence of (x, y, z) coordinates with the object
:class:`nilearn.input_data.NiftiSpheresMasker`.
The resulting signal is then prepared by the masker object: Detrended,
band-pass filtered and **standardized to 1 variance**.
.. code-block:: default
from nilearn import input_data
masker = input_data.NiftiSpheresMasker(
dmn_coords, radius=8,
detrend=True, standardize=True,
low_pass=0.1, high_pass=0.01, t_r=2,
memory='nilearn_cache', memory_level=1, verbose=2)
# Additionally, we pass confound information to ensure our extracted
# signal is cleaned from confounds.
func_filename = dataset.func[0]
confounds_filename = dataset.confounds[0]
time_series = masker.fit_transform(func_filename,
confounds=[confounds_filename])
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
________________________________________________________________________________
[Memory] Calling nilearn.input_data.base_masker.filter_and_extract...
filter_and_extract('/home/varoquau/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz',
,
{ 'allow_overlap': False,
'detrend': True,
'dtype': None,
'high_pass': 0.01,
'low_pass': 0.1,
'mask_img': None,
'radius': 8,
'seeds': [(0, -52, 18), (-46, -68, 32), (46, -68, 32), (1, 50, -5)],
'smoothing_fwhm': None,
'standardize': True,
't_r': 2}, confounds=[ '/home/varoquau/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_desc-reducedConfounds_regressors.tsv'], dtype=None, memory=Memory(location=nilearn_cache/joblib), memory_level=1, verbose=2)
[NiftiSpheresMasker.transform_single_imgs] Loading data from /home/varoquau/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz
[NiftiSpheresMasker.transform_single_imgs] Extracting region signals
[NiftiSpheresMasker.transform_single_imgs] Cleaning extracted signals
_______________________________________________filter_and_extract - 2.5s, 0.0min
Display time series
--------------------
.. code-block:: default
import matplotlib.pyplot as plt
for time_serie, label in zip(time_series.T, labels):
plt.plot(time_serie, label=label)
plt.title('Default Mode Network Time Series')
plt.xlabel('Scan number')
plt.ylabel('Normalized signal')
plt.legend()
plt.tight_layout()
.. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_001.png
:alt: Default Mode Network Time Series
:class: sphx-glr-single-img
Compute partial correlation matrix
-----------------------------------
Using object :class:`nilearn.connectome.ConnectivityMeasure`: Its
default covariance estimator is Ledoit-Wolf, allowing to obtain accurate
partial correlations.
.. code-block:: default
from nilearn.connectome import ConnectivityMeasure
connectivity_measure = ConnectivityMeasure(kind='partial correlation')
partial_correlation_matrix = connectivity_measure.fit_transform(
[time_series])[0]
Display connectome
-------------------
We display the graph of connections with
`:func: nilearn.plotting.plot_connectome`.
.. code-block:: default
from nilearn import plotting
plotting.plot_connectome(partial_correlation_matrix, dmn_coords,
title="Default Mode Network Connectivity")
.. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_002.png
:alt: plot sphere based connectome
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Display connectome with hemispheric projections.
Notice (0, -52, 18) is included in both hemispheres since x == 0.
.. code-block:: default
plotting.plot_connectome(partial_correlation_matrix, dmn_coords,
title="Connectivity projected on hemispheres",
display_mode='lyrz')
plotting.show()
.. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_003.png
:alt: plot sphere based connectome
:class: sphx-glr-single-img
3D visualization in a web browser
---------------------------------
An alternative to :func:`nilearn.plotting.plot_connectome` is to use
:func:`nilearn.plotting.view_connectome`, which gives more interactive
visualizations in a web browser. See :ref:`interactive-connectome-plotting`
for more details.
.. code-block:: default
view = plotting.view_connectome(partial_correlation_matrix, dmn_coords)
# In a Jupyter notebook, if ``view`` is the output of a cell, it will
# be displayed below the cell
view
.. only:: builder_html
.. raw:: html
.. code-block:: default
# uncomment this to open the plot in a web browser:
# view.open_in_browser()
Extract signals on spheres from an atlas
----------------------------------------
Next, instead of supplying our own coordinates, we will use coordinates
generated at the center of mass of regions from two different atlases.
This time, we'll use a different correlation measure.
First we fetch the coordinates of the Power atlas
.. code-block:: default
power = datasets.fetch_coords_power_2011()
print('Power atlas comes with {0}.'.format(power.keys()))
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Power atlas comes with dict_keys(['rois', 'description']).
.. note::
You can retrieve the coordinates for any atlas, including atlases
not included in nilearn, using
:func:`nilearn.plotting.find_parcellation_cut_coords`.
Compute within spheres averaged time-series
-------------------------------------------
We collect the regions coordinates in a numpy array
.. code-block:: default
import numpy as np
coords = np.vstack((power.rois['x'], power.rois['y'], power.rois['z'])).T
print('Stacked power coordinates in array of shape {0}.'.format(coords.shape))
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Stacked power coordinates in array of shape (264, 3).
and define spheres masker, with small enough radius to avoid regions overlap.
.. code-block:: default
spheres_masker = input_data.NiftiSpheresMasker(
seeds=coords, smoothing_fwhm=6, radius=5.,
detrend=True, standardize=True, low_pass=0.1, high_pass=0.01, t_r=2)
timeseries = spheres_masker.fit_transform(func_filename,
confounds=confounds_filename)
Estimate correlations
---------------------
We start by estimating the signal **covariance** matrix. Here the
number of ROIs exceeds the number of samples,
.. code-block:: default
print('time series has {0} samples'.format(timeseries.shape[0]))
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
time series has 168 samples
in which situation the graphical lasso **sparse inverse covariance**
estimator captures well the covariance **structure**.
.. code-block:: default
try:
from sklearn.covariance import GraphicalLassoCV
except ImportError:
# for Scitkit-Learn < v0.20.0
from sklearn.covariance import GraphLassoCV as GraphicalLassoCV
covariance_estimator = GraphicalLassoCV(cv=3, verbose=1)
We just fit our regions signals into the `GraphicalLassoCV` object
.. code-block:: default
covariance_estimator.fit(timeseries)
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 3.9s finished
[GraphicalLassoCV] Done refinement 1 out of 4: 3s
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 12.2s finished
[GraphicalLassoCV] Done refinement 2 out of 4: 16s
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 16.0s finished
[GraphicalLassoCV] Done refinement 3 out of 4: 32s
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 16.2s finished
[GraphicalLassoCV] Done refinement 4 out of 4: 48s
GraphicalLassoCV(cv=3, verbose=1)
and get the ROI-to-ROI covariance matrix.
.. code-block:: default
matrix = covariance_estimator.covariance_
print('Covariance matrix has shape {0}.'.format(matrix.shape))
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Covariance matrix has shape (264, 264).
Plot matrix, graph, and strength
--------------------------------
We use `:func: nilearn.plotting.plot_matrix` to visualize our correlation matrix
and display the graph of connections with `nilearn.plotting.plot_connectome`.
.. code-block:: default
from nilearn import plotting
plotting.plot_matrix(matrix, vmin=-1., vmax=1., colorbar=True,
title='Power correlation matrix')
# Tweak edge_threshold to keep only the strongest connections.
plotting.plot_connectome(matrix, coords, title='Power correlation graph',
edge_threshold='99.8%', node_size=20, colorbar=True)
.. rst-class:: sphx-glr-horizontal
*
.. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_004.png
:alt: plot sphere based connectome
:class: sphx-glr-multi-img
*
.. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_005.png
:alt: plot sphere based connectome
:class: sphx-glr-multi-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
.. note::
Note the 1. on the matrix diagonal: These are the signals variances, set
to 1. by the `spheres_masker`. Hence the covariance of the signal is a
correlation matrix.
Sometimes, the information in the correlation matrix is overwhelming and
aggregating edge strength from the graph would help. Use the function
`nilearn.plotting.plot_markers` to visualize this information.
.. code-block:: default
# calculate normalized, absolute strength for each node
node_strength = np.sum(np.abs(matrix), axis=0)
node_strength /= np.max(node_strength)
plotting.plot_markers(
node_strength,
coords,
title='Node strength for absolute value of edges for Power atlas',
)
.. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_006.png
:alt: plot sphere based connectome
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
From the correlation matrix, we observe that there is a positive and negative
structure. We could make two different plots, one for the positive and one for
the negative structure.
.. code-block:: default
from matplotlib.pyplot import cm
# clip connectivity matrix to preserve positive and negative edges
positive_edges = np.clip(matrix, 0, matrix.max())
negative_edges = np.clip(matrix, matrix.min(), 0)
# calculate strength for positive edges
node_strength_positive = np.sum(np.abs(positive_edges), axis=0)
node_strength_positive /= np.max(node_strength_positive)
# calculate strength for negative edges
node_strength_negative = np.sum(np.abs(negative_edges), axis=0)
node_strength_negative /= np.max(node_strength_negative)
# plot nodes' strength for positive edges
plotting.plot_markers(
node_strength_positive,
coords,
title='Node strength for the positive edges for Power atlas',
node_cmap=cm.YlOrRd
)
# plot nodes' strength for negative edges
plotting.plot_markers(
node_strength_negative,
coords,
title='Node strength for the negative edges for Power atlas',
node_cmap=cm.PuBu
)
.. rst-class:: sphx-glr-horizontal
*
.. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_007.png
:alt: plot sphere based connectome
:class: sphx-glr-multi-img
*
.. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_008.png
:alt: plot sphere based connectome
:class: sphx-glr-multi-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Connectome extracted from Dosenbach's atlas
-------------------------------------------
We repeat the same steps for Dosenbach's atlas.
.. code-block:: default
dosenbach = datasets.fetch_coords_dosenbach_2010()
coords = np.vstack((
dosenbach.rois['x'],
dosenbach.rois['y'],
dosenbach.rois['z'],
)).T
spheres_masker = input_data.NiftiSpheresMasker(
seeds=coords, smoothing_fwhm=6, radius=4.5,
detrend=True, standardize=True, low_pass=0.1, high_pass=0.01, t_r=2)
timeseries = spheres_masker.fit_transform(func_filename,
confounds=confounds_filename)
covariance_estimator = GraphicalLassoCV()
covariance_estimator.fit(timeseries)
matrix = covariance_estimator.covariance_
plotting.plot_matrix(matrix, vmin=-1., vmax=1., colorbar=True,
title='Dosenbach correlation matrix')
plotting.plot_connectome(matrix, coords, title='Dosenbach correlation graph',
edge_threshold="99.7%", node_size=20, colorbar=True)
# calculate average strength for each node
node_strength = np.sum(np.abs(matrix), axis=0)
node_strength /= np.max(node_strength)
plotting.plot_markers(
node_strength,
coords,
title='Node strength for absolute value of edges for Dosenbach atlas',
)
# clip connectivity matrix to preserve positive and negative edges
positive_edges = np.clip(matrix, 0, matrix.max())
negative_edges = np.clip(matrix, matrix.min(), 0)
# calculate strength for positive and edges
node_strength_positive = np.sum(np.abs(positive_edges), axis=0)
node_strength_positive /= np.max(node_strength_positive)
node_strength_negative = np.sum(np.abs(negative_edges), axis=0)
node_strength_negative /= np.max(node_strength_negative)
# plot nodes' strength for positive edges
plotting.plot_markers(
node_strength_positive,
coords,
title='Node strength for the positive edges for Dosenbach atlas',
node_cmap=cm.YlOrRd
)
# plot nodes' strength for negative edges
plotting.plot_markers(
node_strength_negative,
coords,
title='Node strength for the negative edges for Dosenbach atlas',
node_cmap=cm.PuBu
)
.. rst-class:: sphx-glr-horizontal
*
.. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_009.png
:alt: plot sphere based connectome
:class: sphx-glr-multi-img
*
.. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_010.png
:alt: plot sphere based connectome
:class: sphx-glr-multi-img
*
.. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_011.png
:alt: plot sphere based connectome
:class: sphx-glr-multi-img
*
.. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_012.png
:alt: plot sphere based connectome
:class: sphx-glr-multi-img
*
.. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_sphere_based_connectome_013.png
:alt: plot sphere based connectome
:class: sphx-glr-multi-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
/usr/lib/python3/dist-packages/numpy/lib/npyio.py:2358: VisibleDeprecationWarning: Reading unicode strings without specifying the encoding argument is deprecated. Set the encoding, use None for the system default.
output = genfromtxt(fname, **kwargs)
/home/varoquau/dev/scikit-learn/sklearn/covariance/_graph_lasso.py:241: RuntimeWarning: invalid value encountered in multiply
precision_[indices != idx, idx] = (- precision_[idx, idx]
/home/varoquau/dev/scikit-learn/sklearn/covariance/_graph_lasso.py:243: RuntimeWarning: invalid value encountered in multiply
precision_[idx, indices != idx] = (- precision_[idx, idx]
We can easily identify the Dosenbach's networks from the matrix blocks.
.. code-block:: default
print('Dosenbach networks names are {0}'.format(np.unique(dosenbach.networks)))
plotting.show()
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Dosenbach networks names are [b'cerebellum' b'cingulo-opercular' b'default' b'fronto-parietal'
b'occipital' b'sensorimotor']
.. seealso::
* :ref:`sphx_glr_auto_examples_03_connectivity_plot_atlas_comparison.py`
* :ref:`sphx_glr_auto_examples_03_connectivity_plot_multi_subject_connectome.py`
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 2 minutes 10.187 seconds)
.. _sphx_glr_download_auto_examples_03_connectivity_plot_sphere_based_connectome.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: binder-badge
.. image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/03_connectivity/plot_sphere_based_connectome.ipynb
:width: 150 px
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: plot_sphere_based_connectome.py `
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: plot_sphere_based_connectome.ipynb `
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery `_