.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_03_connectivity_plot_signal_extraction.py: Extracting signals from a brain parcellation ============================================ Here we show how to extract signals from a brain parcellation and compute a correlation matrix. We also show the importance of defining good confounds signals: the first correlation matrix is computed after regressing out simple confounds signals: movement regressors, white matter and CSF signals, ... The second one is without any confounds: all regions are connected to each other. One reference that discusses the importance of confounds is `Varoquaux and Craddock, Learning and comparing functional connectomes across subjects, NeuroImage 2013 `_. This is just a code example, see the :ref:`corresponding section in the documentation ` for more. .. note:: This example needs SciPy >= 1.0.0 for the reordering of the matrix. Retrieve the atlas and the data -------------------------------- .. code-block:: default from nilearn import datasets dataset = datasets.fetch_atlas_harvard_oxford('cort-maxprob-thr25-2mm') atlas_filename = dataset.maps labels = dataset.labels print('Atlas ROIs are located in nifti image (4D) at: %s' % atlas_filename) # 4D data # One subject of brain development fmri data data = datasets.fetch_development_fmri(n_subjects=1) fmri_filenames = data.func[0] .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Atlas ROIs are located in nifti image (4D) at: /home/varoquau/nilearn_data/fsl/data/atlases/HarvardOxford/HarvardOxford-cort-maxprob-thr25-2mm.nii.gz Extract signals on a parcellation defined by labels ----------------------------------------------------- Using the NiftiLabelsMasker .. code-block:: default from nilearn.input_data import NiftiLabelsMasker masker = NiftiLabelsMasker(labels_img=atlas_filename, standardize=True, memory='nilearn_cache', verbose=5) # Here we go from nifti files to the signal time series in a numpy # array. Note how we give confounds to be regressed out during signal # extraction time_series = masker.fit_transform(fmri_filenames, confounds=data.confounds) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [NiftiLabelsMasker.fit_transform] loading data from /home/varoquau/nilearn_data/fsl/data/atlases/HarvardOxford/HarvardOxford-cort-maxprob-thr25-2mm.nii.gz Resampling labels ________________________________________________________________________________ [Memory] Calling nilearn.input_data.base_masker.filter_and_extract... filter_and_extract('/home/varoquau/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz', , { 'background_label': 0, 'detrend': False, 'dtype': None, 'high_pass': None, 'labels_img': '/home/varoquau/nilearn_data/fsl/data/atlases/HarvardOxford/HarvardOxford-cort-maxprob-thr25-2mm.nii.gz', 'low_pass': None, 'mask_img': None, 'smoothing_fwhm': None, 'standardize': True, 'strategy': 'mean', 't_r': None, 'target_affine': None, 'target_shape': None}, confounds=[ '/home/varoquau/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_desc-reducedConfounds_regressors.tsv'], dtype=None, memory=Memory(location=nilearn_cache/joblib), memory_level=1, verbose=5) [NiftiLabelsMasker.transform_single_imgs] Loading data from /home/varoquau/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz [NiftiLabelsMasker.transform_single_imgs] Extracting region signals [NiftiLabelsMasker.transform_single_imgs] Cleaning extracted signals _______________________________________________filter_and_extract - 0.6s, 0.0min Compute and display a correlation matrix ----------------------------------------- .. code-block:: default from nilearn.connectome import ConnectivityMeasure correlation_measure = ConnectivityMeasure(kind='correlation') correlation_matrix = correlation_measure.fit_transform([time_series])[0] # Plot the correlation matrix import numpy as np from nilearn import plotting # Make a large figure # Mask the main diagonal for visualization: np.fill_diagonal(correlation_matrix, 0) # The labels we have start with the background (0), hence we skip the # first label # matrices are ordered for block-like representation plotting.plot_matrix(correlation_matrix, figure=(10, 8), labels=labels[1:], vmax=0.8, vmin=-0.8, reorder=True) .. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_signal_extraction_001.png :alt: plot signal extraction :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Same thing without confounds, to stress the importance of confounds -------------------------------------------------------------------- .. code-block:: default time_series = masker.fit_transform(fmri_filenames) # Note how we did not specify confounds above. This is bad! correlation_matrix = correlation_measure.fit_transform([time_series])[0] # Mask the main diagonal for visualization: np.fill_diagonal(correlation_matrix, 0) plotting.plot_matrix(correlation_matrix, figure=(10, 8), labels=labels[1:], vmax=0.8, vmin=-0.8, title='No confounds', reorder=True) plotting.show() .. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_signal_extraction_002.png :alt: plot signal extraction :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [NiftiLabelsMasker.fit_transform] loading data from /home/varoquau/nilearn_data/fsl/data/atlases/HarvardOxford/HarvardOxford-cort-maxprob-thr25-2mm.nii.gz ________________________________________________________________________________ [Memory] Calling nilearn.input_data.base_masker.filter_and_extract... filter_and_extract('/home/varoquau/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz', , { 'background_label': 0, 'detrend': False, 'dtype': None, 'high_pass': None, 'labels_img': '/home/varoquau/nilearn_data/fsl/data/atlases/HarvardOxford/HarvardOxford-cort-maxprob-thr25-2mm.nii.gz', 'low_pass': None, 'mask_img': None, 'smoothing_fwhm': None, 'standardize': True, 'strategy': 'mean', 't_r': None, 'target_affine': None, 'target_shape': None}, confounds=None, dtype=None, memory=Memory(location=nilearn_cache/joblib), memory_level=1, verbose=5) [NiftiLabelsMasker.transform_single_imgs] Loading data from /home/varoquau/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz [NiftiLabelsMasker.transform_single_imgs] Extracting region signals [NiftiLabelsMasker.transform_single_imgs] Cleaning extracted signals _______________________________________________filter_and_extract - 0.6s, 0.0min .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 2.308 seconds) .. _sphx_glr_download_auto_examples_03_connectivity_plot_signal_extraction.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/03_connectivity/plot_signal_extraction.ipynb :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_signal_extraction.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_signal_extraction.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_