.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_03_connectivity_plot_probabilistic_atlas_extraction.py: Extracting signals of a probabilistic atlas of functional regions ================================================================= This example extracts the signal on regions defined via a probabilistic atlas, to construct a functional connectome. We use the `MSDL atlas `_ of functional regions in movie-watching. The key to extract signals is to use the :class:`nilearn.input_data.NiftiMapsMasker` that can transform nifti objects to time series using a probabilistic atlas. As the MSDL atlas comes with (x, y, z) MNI coordinates for the different regions, we can visualize the matrix as a graph of interaction in a brain. To avoid having too dense a graph, we represent only the 20% edges with the highest values. Retrieve the atlas and the data -------------------------------- .. code-block:: default from nilearn import datasets atlas = datasets.fetch_atlas_msdl() # Loading atlas image stored in 'maps' atlas_filename = atlas['maps'] # Loading atlas data stored in 'labels' labels = atlas['labels'] # Load the functional datasets data = datasets.fetch_development_fmri(n_subjects=1) print('First subject resting-state nifti image (4D) is located at: %s' % data.func[0]) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /usr/lib/python3/dist-packages/numpy/lib/npyio.py:2358: VisibleDeprecationWarning: Reading unicode strings without specifying the encoding argument is deprecated. Set the encoding, use None for the system default. output = genfromtxt(fname, **kwargs) First subject resting-state nifti image (4D) is located at: /home/varoquau/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz Extract the time series ------------------------ .. code-block:: default from nilearn.input_data import NiftiMapsMasker masker = NiftiMapsMasker(maps_img=atlas_filename, standardize=True, memory='nilearn_cache', verbose=5) time_series = masker.fit_transform(data.func[0], confounds=data.confounds) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [NiftiMapsMasker.fit_transform] loading regions from /home/varoquau/nilearn_data/msdl_atlas/MSDL_rois/msdl_rois.nii Resampling maps /home/varoquau/dev/nilearn/nilearn/_utils/cache_mixin.py:295: UserWarning: memory_level is currently set to 0 but a Memory object has been provided. Setting memory_level to 1. warnings.warn("memory_level is currently set to 0 but " ________________________________________________________________________________ [Memory] Calling nilearn.image.resampling.resample_img... resample_img(, interpolation='continuous', target_shape=(50, 59, 50), target_affine=array([[ 4., 0., 0., -96.], [ 0., 4., 0., -132.], [ 0., 0., 4., -78.], [ 0., 0., 0., 1.]])) _____________________________________________________resample_img - 1.0s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.input_data.base_masker.filter_and_extract... filter_and_extract('/home/varoquau/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz', , { 'allow_overlap': True, 'detrend': False, 'dtype': None, 'high_pass': None, 'low_pass': None, 'maps_img': '/home/varoquau/nilearn_data/msdl_atlas/MSDL_rois/msdl_rois.nii', 'mask_img': None, 'smoothing_fwhm': None, 'standardize': True, 't_r': None, 'target_affine': None, 'target_shape': None}, confounds=[ '/home/varoquau/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_desc-reducedConfounds_regressors.tsv'], dtype=None, memory=Memory(location=nilearn_cache/joblib), memory_level=1, verbose=5) [NiftiMapsMasker.transform_single_imgs] Loading data from /home/varoquau/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz [NiftiMapsMasker.transform_single_imgs] Extracting region signals [NiftiMapsMasker.transform_single_imgs] Cleaning extracted signals _______________________________________________filter_and_extract - 3.4s, 0.1min `time_series` is now a 2D matrix, of shape (number of time points x number of regions) .. code-block:: default print(time_series.shape) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none (168, 39) Build and display a correlation matrix --------------------------------------- .. code-block:: default from nilearn.connectome import ConnectivityMeasure correlation_measure = ConnectivityMeasure(kind='correlation') correlation_matrix = correlation_measure.fit_transform([time_series])[0] # Display the correlation matrix import numpy as np from nilearn import plotting # Mask out the major diagonal np.fill_diagonal(correlation_matrix, 0) plotting.plot_matrix(correlation_matrix, labels=labels, colorbar=True, vmax=0.8, vmin=-0.8) .. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_probabilistic_atlas_extraction_001.png :alt: plot probabilistic atlas extraction :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none And now display the corresponding graph ---------------------------------------- .. code-block:: default from nilearn import plotting coords = atlas.region_coords # We threshold to keep only the 20% of edges with the highest value # because the graph is very dense plotting.plot_connectome(correlation_matrix, coords, edge_threshold="80%", colorbar=True) plotting.show() .. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_probabilistic_atlas_extraction_002.png :alt: plot probabilistic atlas extraction :class: sphx-glr-single-img 3D visualization in a web browser --------------------------------- An alternative to :func:`nilearn.plotting.plot_connectome` is to use :func:`nilearn.plotting.view_connectome` that gives more interactive visualizations in a web browser. See :ref:`interactive-connectome-plotting` for more details. .. code-block:: default view = plotting.view_connectome(correlation_matrix, coords, edge_threshold='80%') # In a Jupyter notebook, if ``view`` is the output of a cell, it will # be displayed below the cell view .. only:: builder_html .. raw:: html

.. code-block:: default # uncomment this to open the plot in a web browser: # view.open_in_browser() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 6.188 seconds) .. _sphx_glr_download_auto_examples_03_connectivity_plot_probabilistic_atlas_extraction.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/03_connectivity/plot_probabilistic_atlas_extraction.ipynb :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_probabilistic_atlas_extraction.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_probabilistic_atlas_extraction.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_