.. only:: html
.. note::
:class: sphx-glr-download-link-note
Click :ref:`here ` to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_03_connectivity_plot_inverse_covariance_connectome.py:
Computing a connectome with sparse inverse covariance
=======================================================
This example constructs a functional connectome using the sparse inverse
covariance.
We use the `MSDL atlas
`_
of functional regions in movie watching, and the
:class:`nilearn.input_data.NiftiMapsMasker` to extract time series.
Note that the inverse covariance (or precision) contains values that can
be linked to *negated* partial correlations, so we negated it for
display.
As the MSDL atlas comes with (x, y, z) MNI coordinates for the different
regions, we can visualize the matrix as a graph of interaction in a
brain. To avoid having too dense a graph, we represent only the 20% edges
with the highest values.
Retrieve the atlas and the data
--------------------------------
.. code-block:: default
from nilearn import datasets
atlas = datasets.fetch_atlas_msdl()
# Loading atlas image stored in 'maps'
atlas_filename = atlas['maps']
# Loading atlas data stored in 'labels'
labels = atlas['labels']
# Loading the functional datasets
data = datasets.fetch_development_fmri(n_subjects=1)
# print basic information on the dataset
print('First subject functional nifti images (4D) are at: %s' %
data.func[0]) # 4D data
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
/usr/lib/python3/dist-packages/numpy/lib/npyio.py:2358: VisibleDeprecationWarning: Reading unicode strings without specifying the encoding argument is deprecated. Set the encoding, use None for the system default.
output = genfromtxt(fname, **kwargs)
First subject functional nifti images (4D) are at: /home/varoquau/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz
Extract time series
--------------------
.. code-block:: default
from nilearn.input_data import NiftiMapsMasker
masker = NiftiMapsMasker(maps_img=atlas_filename, standardize=True,
memory='nilearn_cache', verbose=5)
time_series = masker.fit_transform(data.func[0],
confounds=data.confounds)
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
[NiftiMapsMasker.fit_transform] loading regions from /home/varoquau/nilearn_data/msdl_atlas/MSDL_rois/msdl_rois.nii
Resampling maps
/home/varoquau/dev/nilearn/nilearn/_utils/cache_mixin.py:295: UserWarning: memory_level is currently set to 0 but a Memory object has been provided. Setting memory_level to 1.
warnings.warn("memory_level is currently set to 0 but "
[Memory]0.0s, 0.0min : Loading resample_img...
________________________________________resample_img cache loaded - 0.0s, 0.0min
[Memory]0.1s, 0.0min : Loading filter_and_extract...
__________________________________filter_and_extract cache loaded - 0.0s, 0.0min
Compute the sparse inverse covariance
--------------------------------------
.. code-block:: default
try:
from sklearn.covariance import GraphicalLassoCV
except ImportError:
# for Scitkit-Learn < v0.20.0
from sklearn.covariance import GraphLassoCV as GraphicalLassoCV
estimator = GraphicalLassoCV()
estimator.fit(time_series)
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
GraphicalLassoCV()
Display the connectome matrix
------------------------------
.. code-block:: default
from nilearn import plotting
# Display the covariance
# The covariance can be found at estimator.covariance_
plotting.plot_matrix(estimator.covariance_, labels=labels,
figure=(9, 7), vmax=1, vmin=-1,
title='Covariance')
.. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_inverse_covariance_connectome_001.png
:alt: plot inverse covariance connectome
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
And now display the corresponding graph
----------------------------------------
.. code-block:: default
coords = atlas.region_coords
plotting.plot_connectome(estimator.covariance_, coords,
title='Covariance')
.. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_inverse_covariance_connectome_002.png
:alt: plot inverse covariance connectome
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Display the sparse inverse covariance
--------------------------------------
we negate it to get partial correlations
.. code-block:: default
plotting.plot_matrix(-estimator.precision_, labels=labels,
figure=(9, 7), vmax=1, vmin=-1,
title='Sparse inverse covariance')
.. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_inverse_covariance_connectome_003.png
:alt: plot inverse covariance connectome
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
And now display the corresponding graph
----------------------------------------
.. code-block:: default
plotting.plot_connectome(-estimator.precision_, coords,
title='Sparse inverse covariance')
plotting.show()
.. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_inverse_covariance_connectome_004.png
:alt: plot inverse covariance connectome
:class: sphx-glr-single-img
3D visualization in a web browser
---------------------------------
An alternative to :func:`nilearn.plotting.plot_connectome` is to use
:func:`nilearn.plotting.view_connectome` that gives more interactive
visualizations in a web browser. See :ref:`interactive-connectome-plotting`
for more details.
.. code-block:: default
view = plotting.view_connectome(-estimator.precision_, coords)
# In a Jupyter notebook, if ``view`` is the output of a cell, it will
# be displayed below the cell
view
.. only:: builder_html
.. raw:: html
.. code-block:: default
# uncomment this to open the plot in a web browser:
# view.open_in_browser()
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 7.854 seconds)
.. _sphx_glr_download_auto_examples_03_connectivity_plot_inverse_covariance_connectome.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: binder-badge
.. image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/03_connectivity/plot_inverse_covariance_connectome.ipynb
:width: 150 px
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: plot_inverse_covariance_connectome.py `
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: plot_inverse_covariance_connectome.ipynb `
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery `_