.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_03_connectivity_plot_inverse_covariance_connectome.py: Computing a connectome with sparse inverse covariance ======================================================= This example constructs a functional connectome using the sparse inverse covariance. We use the `MSDL atlas `_ of functional regions in movie watching, and the :class:`nilearn.input_data.NiftiMapsMasker` to extract time series. Note that the inverse covariance (or precision) contains values that can be linked to *negated* partial correlations, so we negated it for display. As the MSDL atlas comes with (x, y, z) MNI coordinates for the different regions, we can visualize the matrix as a graph of interaction in a brain. To avoid having too dense a graph, we represent only the 20% edges with the highest values. Retrieve the atlas and the data -------------------------------- .. code-block:: default from nilearn import datasets atlas = datasets.fetch_atlas_msdl() # Loading atlas image stored in 'maps' atlas_filename = atlas['maps'] # Loading atlas data stored in 'labels' labels = atlas['labels'] # Loading the functional datasets data = datasets.fetch_development_fmri(n_subjects=1) # print basic information on the dataset print('First subject functional nifti images (4D) are at: %s' % data.func[0]) # 4D data .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /usr/lib/python3/dist-packages/numpy/lib/npyio.py:2358: VisibleDeprecationWarning: Reading unicode strings without specifying the encoding argument is deprecated. Set the encoding, use None for the system default. output = genfromtxt(fname, **kwargs) First subject functional nifti images (4D) are at: /home/varoquau/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz Extract time series -------------------- .. code-block:: default from nilearn.input_data import NiftiMapsMasker masker = NiftiMapsMasker(maps_img=atlas_filename, standardize=True, memory='nilearn_cache', verbose=5) time_series = masker.fit_transform(data.func[0], confounds=data.confounds) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [NiftiMapsMasker.fit_transform] loading regions from /home/varoquau/nilearn_data/msdl_atlas/MSDL_rois/msdl_rois.nii Resampling maps /home/varoquau/dev/nilearn/nilearn/_utils/cache_mixin.py:295: UserWarning: memory_level is currently set to 0 but a Memory object has been provided. Setting memory_level to 1. warnings.warn("memory_level is currently set to 0 but " [Memory]0.0s, 0.0min : Loading resample_img... ________________________________________resample_img cache loaded - 0.0s, 0.0min [Memory]0.1s, 0.0min : Loading filter_and_extract... __________________________________filter_and_extract cache loaded - 0.0s, 0.0min Compute the sparse inverse covariance -------------------------------------- .. code-block:: default try: from sklearn.covariance import GraphicalLassoCV except ImportError: # for Scitkit-Learn < v0.20.0 from sklearn.covariance import GraphLassoCV as GraphicalLassoCV estimator = GraphicalLassoCV() estimator.fit(time_series) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none GraphicalLassoCV() Display the connectome matrix ------------------------------ .. code-block:: default from nilearn import plotting # Display the covariance # The covariance can be found at estimator.covariance_ plotting.plot_matrix(estimator.covariance_, labels=labels, figure=(9, 7), vmax=1, vmin=-1, title='Covariance') .. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_inverse_covariance_connectome_001.png :alt: plot inverse covariance connectome :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none And now display the corresponding graph ---------------------------------------- .. code-block:: default coords = atlas.region_coords plotting.plot_connectome(estimator.covariance_, coords, title='Covariance') .. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_inverse_covariance_connectome_002.png :alt: plot inverse covariance connectome :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Display the sparse inverse covariance -------------------------------------- we negate it to get partial correlations .. code-block:: default plotting.plot_matrix(-estimator.precision_, labels=labels, figure=(9, 7), vmax=1, vmin=-1, title='Sparse inverse covariance') .. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_inverse_covariance_connectome_003.png :alt: plot inverse covariance connectome :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none And now display the corresponding graph ---------------------------------------- .. code-block:: default plotting.plot_connectome(-estimator.precision_, coords, title='Sparse inverse covariance') plotting.show() .. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_inverse_covariance_connectome_004.png :alt: plot inverse covariance connectome :class: sphx-glr-single-img 3D visualization in a web browser --------------------------------- An alternative to :func:`nilearn.plotting.plot_connectome` is to use :func:`nilearn.plotting.view_connectome` that gives more interactive visualizations in a web browser. See :ref:`interactive-connectome-plotting` for more details. .. code-block:: default view = plotting.view_connectome(-estimator.precision_, coords) # In a Jupyter notebook, if ``view`` is the output of a cell, it will # be displayed below the cell view .. only:: builder_html .. raw:: html

.. code-block:: default # uncomment this to open the plot in a web browser: # view.open_in_browser() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 7.854 seconds) .. _sphx_glr_download_auto_examples_03_connectivity_plot_inverse_covariance_connectome.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/03_connectivity/plot_inverse_covariance_connectome.ipynb :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_inverse_covariance_connectome.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_inverse_covariance_connectome.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_