.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_03_connectivity_plot_group_level_connectivity.py: Classification of age groups using functional connectivity ========================================================== This example compares different kinds of functional connectivity between regions of interest : correlation, partial correlation, and tangent space embedding. The resulting connectivity coefficients can be used to discriminate children from adults. In general, the tangent space embedding **outperforms** the standard correlations: see `Dadi et al 2019 `_ for a careful study. Load brain development fMRI dataset and MSDL atlas ------------------------------------------------------------------- We study only 30 subjects from the dataset, to save computation time. .. code-block:: default from nilearn import datasets development_dataset = datasets.fetch_development_fmri(n_subjects=30) We use probabilistic regions of interest (ROIs) from the MSDL atlas. .. code-block:: default msdl_data = datasets.fetch_atlas_msdl() msdl_coords = msdl_data.region_coords n_regions = len(msdl_coords) print('MSDL has {0} ROIs, part of the following networks :\n{1}.'.format( n_regions, msdl_data.networks)) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /usr/lib/python3/dist-packages/numpy/lib/npyio.py:2358: VisibleDeprecationWarning: Reading unicode strings without specifying the encoding argument is deprecated. Set the encoding, use None for the system default. output = genfromtxt(fname, **kwargs) MSDL has 39 ROIs, part of the following networks : [b'Aud', b'Aud', b'Striate', b'DMN', b'DMN', b'DMN', b'DMN', b'Occ post', b'Motor', b'R V Att', b'R V Att', b'R V Att', b'R V Att', b'Basal', b'L V Att', b'L V Att', b'L V Att', b'D Att', b'D Att', b'Vis Sec', b'Vis Sec', b'Vis Sec', b'Salience', b'Salience', b'Salience', b'Temporal', b'Temporal', b'Language', b'Language', b'Language', b'Language', b'Language', b'Cereb', b'Dors PCC', b'Cing-Ins', b'Cing-Ins', b'Cing-Ins', b'Ant IPS', b'Ant IPS']. Region signals extraction ------------------------- To extract regions time series, we instantiate a :class:`nilearn.input_data.NiftiMapsMasker` object and pass the atlas the file name to it, as well as filtering band-width and detrending option. .. code-block:: default from nilearn import input_data masker = input_data.NiftiMapsMasker( msdl_data.maps, resampling_target="data", t_r=2, detrend=True, low_pass=.1, high_pass=.01, memory='nilearn_cache', memory_level=1).fit() Then we compute region signals and extract useful phenotypic informations. .. code-block:: default children = [] pooled_subjects = [] groups = [] # child or adult for func_file, confound_file, phenotypic in zip( development_dataset.func, development_dataset.confounds, development_dataset.phenotypic): time_series = masker.transform(func_file, confounds=confound_file) pooled_subjects.append(time_series) if phenotypic['Child_Adult'] == 'child': children.append(time_series) groups.append(phenotypic['Child_Adult']) print('Data has {0} children.'.format(len(children))) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Data has 24 children. ROI-to-ROI correlations of children ----------------------------------- The simpler and most commonly used kind of connectivity is correlation. It models the full (marginal) connectivity between pairwise ROIs. We can estimate it using :class:`nilearn.connectome.ConnectivityMeasure`. .. code-block:: default from nilearn.connectome import ConnectivityMeasure correlation_measure = ConnectivityMeasure(kind='correlation') From the list of ROIs time-series for children, the `correlation_measure` computes individual correlation matrices. .. code-block:: default correlation_matrices = correlation_measure.fit_transform(children) # All individual coefficients are stacked in a unique 2D matrix. print('Correlations of children are stacked in an array of shape {0}' .format(correlation_matrices.shape)) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Correlations of children are stacked in an array of shape (24, 39, 39) as well as the average correlation across all fitted subjects. .. code-block:: default mean_correlation_matrix = correlation_measure.mean_ print('Mean correlation has shape {0}.'.format(mean_correlation_matrix.shape)) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Mean correlation has shape (39, 39). We display the connectome matrices of the first 3 children .. code-block:: default from nilearn import plotting from matplotlib import pyplot as plt _, axes = plt.subplots(1, 3, figsize=(15, 5)) for i, (matrix, ax) in enumerate(zip(correlation_matrices, axes)): plotting.plot_matrix(matrix, tri='lower', colorbar=False, axes=ax, title='correlation, child {}'.format(i)) .. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_group_level_connectivity_001.png :alt: plot group level connectivity :class: sphx-glr-single-img The blocks structure that reflect functional networks are visible. Now we display as a connectome the mean correlation matrix over all children. .. code-block:: default plotting.plot_connectome(mean_correlation_matrix, msdl_coords, title='mean correlation over all children') .. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_group_level_connectivity_002.png :alt: plot group level connectivity :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Studying partial correlations ----------------------------- We can also study **direct connections**, revealed by partial correlation coefficients. We just change the `ConnectivityMeasure` kind .. code-block:: default partial_correlation_measure = ConnectivityMeasure(kind='partial correlation') partial_correlation_matrices = partial_correlation_measure.fit_transform( children) Most of direct connections are weaker than full connections. .. code-block:: default _, axes = plt.subplots(1, 3, figsize=(15, 5)) for i, (matrix, ax) in enumerate(zip(partial_correlation_matrices, axes)): plotting.plot_matrix(matrix, tri='lower', colorbar=False, axes=ax, title='partial correlation, child {}'.format(i)) .. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_group_level_connectivity_003.png :alt: plot group level connectivity :class: sphx-glr-single-img .. code-block:: default plotting.plot_connectome( partial_correlation_measure.mean_, msdl_coords, title='mean partial correlation over all children') .. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_group_level_connectivity_004.png :alt: plot group level connectivity :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Extract subjects variabilities around a group connectivity ---------------------------------------------------------- We can use **both** correlations and partial correlations to capture reproducible connectivity patterns at the group-level. This is done by the tangent space embedding. .. code-block:: default tangent_measure = ConnectivityMeasure(kind='tangent') We fit our children group and get the group connectivity matrix stored as in `tangent_measure.mean_`, and individual deviation matrices of each subject from it. .. code-block:: default tangent_matrices = tangent_measure.fit_transform(children) `tangent_matrices` model individual connectivities as **perturbations** of the group connectivity matrix `tangent_measure.mean_`. Keep in mind that these subjects-to-group variability matrices do not directly reflect individual brain connections. For instance negative coefficients can not be interpreted as anticorrelated regions. .. code-block:: default _, axes = plt.subplots(1, 3, figsize=(15, 5)) for i, (matrix, ax) in enumerate(zip(tangent_matrices, axes)): plotting.plot_matrix(matrix, tri='lower', colorbar=False, axes=ax, title='tangent offset, child {}'.format(i)) .. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_group_level_connectivity_005.png :alt: plot group level connectivity :class: sphx-glr-single-img The average tangent matrix cannot be interpreted, as individual matrices represent deviations from the mean, which is set to 0. What kind of connectivity is most powerful for classification? -------------------------------------------------------------- We will use connectivity matrices as features to distinguish children from adults. We use cross-validation and measure classification accuracy to compare the different kinds of connectivity matrices. We use random splits of the subjects into training/testing sets. StratifiedShuffleSplit allows preserving the proportion of children in the test set. .. code-block:: default from sklearn.svm import LinearSVC from sklearn.model_selection import StratifiedShuffleSplit from sklearn.metrics import accuracy_score import numpy as np kinds = ['correlation', 'partial correlation', 'tangent'] _, classes = np.unique(groups, return_inverse=True) cv = StratifiedShuffleSplit(n_splits=15, random_state=0, test_size=5) pooled_subjects = np.asarray(pooled_subjects) scores = {} for kind in kinds: scores[kind] = [] for train, test in cv.split(pooled_subjects, classes): # *ConnectivityMeasure* can output the estimated subjects coefficients # as a 1D arrays through the parameter *vectorize*. connectivity = ConnectivityMeasure(kind=kind, vectorize=True) # build vectorized connectomes for subjects in the train set connectomes = connectivity.fit_transform(pooled_subjects[train]) # fit the classifier classifier = LinearSVC().fit(connectomes, classes[train]) # make predictions for the left-out test subjects predictions = classifier.predict( connectivity.transform(pooled_subjects[test])) # store the accuracy for this cross-validation fold scores[kind].append(accuracy_score(classes[test], predictions)) display the results .. code-block:: default mean_scores = [np.mean(scores[kind]) for kind in kinds] scores_std = [np.std(scores[kind]) for kind in kinds] plt.figure(figsize=(6, 4)) positions = np.arange(len(kinds)) * .1 + .1 plt.barh(positions, mean_scores, align='center', height=.05, xerr=scores_std) yticks = [k.replace(' ', '\n') for k in kinds] plt.yticks(positions, yticks) plt.gca().grid(True) plt.gca().set_axisbelow(True) plt.gca().axvline(.8, color='red', linestyle='--') plt.xlabel('Classification accuracy\n(red line = chance level)') plt.tight_layout() .. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_group_level_connectivity_006.png :alt: plot group level connectivity :class: sphx-glr-single-img This is a small example to showcase nilearn features. In practice such comparisons need to be performed on much larger cohorts and several datasets. `Dadi et al 2019 `_ Showed that across many cohorts and clinical questions, the tangent kind should be preferred. .. code-block:: default plotting.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 2 minutes 5.761 seconds) .. _sphx_glr_download_auto_examples_03_connectivity_plot_group_level_connectivity.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/03_connectivity/plot_group_level_connectivity.ipynb :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_group_level_connectivity.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_group_level_connectivity.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_