.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_03_connectivity_plot_extract_regions_dictlearning_maps.py: Regions extraction using Dictionary Learning and functional connectomes ======================================================================= This example shows how to use :class:`nilearn.regions.RegionExtractor` to extract spatially constrained brain regions from whole brain maps decomposed using dictionary learning and use them to build a functional connectome. We used 20 movie-watching functional datasets from :func:`nilearn.datasets.fetch_development_fmri` and :class:`nilearn.decomposition.DictLearning` for set of brain atlas maps. This example can also be inspired to apply the same steps to even regions extraction using ICA maps. In that case, idea would be to replace dictionary learning to canonical ICA decomposition using :class:`nilearn.decomposition.CanICA` Please see the related documentation of :class:`nilearn.regions.RegionExtractor` for more details. .. note:: The use of the attribute `components_img_` from dictionary learning estimator is implemented from version 0.4.1. For older versions, unmask the deprecated attribute `components_` to get the components image using attribute `masker_` embedded in estimator. See the :ref:`section Inverse transform: unmasking data `. Fetch brain development functional datasets ------------------------------------------------------------ We use nilearn's datasets downloading utilities .. code-block:: default from nilearn import datasets rest_dataset = datasets.fetch_development_fmri(n_subjects=20) func_filenames = rest_dataset.func confounds = rest_dataset.confounds Extract functional networks with DictionaryLearning ----------------------------------------------------------------------- .. code-block:: default # Import dictionary learning algorithm from decomposition module and call the # object and fit the model to the functional datasets from nilearn.decomposition import DictLearning # Initialize DictLearning object dict_learn = DictLearning(n_components=8, smoothing_fwhm=6., memory="nilearn_cache", memory_level=2, random_state=0) # Fit to the data dict_learn.fit(func_filenames) # Resting state networks/maps in attribute `components_img_` # Note that this attribute is implemented from version 0.4.1. # For older versions, see the note section above for details. components_img = dict_learn.components_img_ # Visualization of functional networks # Show networks using plotting utilities from nilearn import plotting plotting.plot_prob_atlas(components_img, view_type='filled_contours', title='Dictionary Learning maps') .. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_extract_regions_dictlearning_maps_001.png :alt: plot extract regions dictlearning maps :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/varoquau/dev/nilearn/nilearn/plotting/displays.py:97: UserWarning: linewidths is ignored by contourf im = getattr(ax, type)(data_2d.copy(), /home/varoquau/dev/nilearn/nilearn/plotting/displays.py:97: UserWarning: No contour levels were found within the data range. im = getattr(ax, type)(data_2d.copy(), Extract regions from networks ------------------------------ .. code-block:: default # Import Region Extractor algorithm from regions module # threshold=0.5 indicates that we keep nominal of amount nonzero voxels across all # maps, less the threshold means that more intense non-voxels will be survived. from nilearn.regions import RegionExtractor extractor = RegionExtractor(components_img, threshold=0.5, thresholding_strategy='ratio_n_voxels', extractor='local_regions', standardize=True, min_region_size=1350) # Just call fit() to process for regions extraction extractor.fit() # Extracted regions are stored in regions_img_ regions_extracted_img = extractor.regions_img_ # Each region index is stored in index_ regions_index = extractor.index_ # Total number of regions extracted n_regions_extracted = regions_extracted_img.shape[-1] # Visualization of region extraction results title = ('%d regions are extracted from %d components.' '\nEach separate color of region indicates extracted region' % (n_regions_extracted, 8)) plotting.plot_prob_atlas(regions_extracted_img, view_type='filled_contours', title=title) .. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_extract_regions_dictlearning_maps_002.png :alt: plot extract regions dictlearning maps :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/varoquau/dev/nilearn/nilearn/plotting/displays.py:97: UserWarning: No contour levels were found within the data range. im = getattr(ax, type)(data_2d.copy(), /home/varoquau/dev/nilearn/nilearn/plotting/displays.py:97: UserWarning: linewidths is ignored by contourf im = getattr(ax, type)(data_2d.copy(), /usr/lib/python3/dist-packages/numpy/ma/core.py:2785: UserWarning: Warning: converting a masked element to nan. _data = np.array(data, dtype=dtype, copy=copy, Compute correlation coefficients --------------------------------- .. code-block:: default # First we need to do subjects timeseries signals extraction and then estimating # correlation matrices on those signals. # To extract timeseries signals, we call transform() from RegionExtractor object # onto each subject functional data stored in func_filenames. # To estimate correlation matrices we import connectome utilities from nilearn from nilearn.connectome import ConnectivityMeasure correlations = [] # Initializing ConnectivityMeasure object with kind='correlation' connectome_measure = ConnectivityMeasure(kind='correlation') for filename, confound in zip(func_filenames, confounds): # call transform from RegionExtractor object to extract timeseries signals timeseries_each_subject = extractor.transform(filename, confounds=confound) # call fit_transform from ConnectivityMeasure object correlation = connectome_measure.fit_transform([timeseries_each_subject]) # saving each subject correlation to correlations correlations.append(correlation) # Mean of all correlations import numpy as np mean_correlations = np.mean(correlations, axis=0).reshape(n_regions_extracted, n_regions_extracted) Plot resulting connectomes ---------------------------- .. code-block:: default title = 'Correlation between %d regions' % n_regions_extracted # First plot the matrix display = plotting.plot_matrix(mean_correlations, vmax=1, vmin=-1, colorbar=True, title=title) # Then find the center of the regions and plot a connectome regions_img = regions_extracted_img coords_connectome = plotting.find_probabilistic_atlas_cut_coords(regions_img) plotting.plot_connectome(mean_correlations, coords_connectome, edge_threshold='90%', title=title) .. rst-class:: sphx-glr-horizontal * .. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_extract_regions_dictlearning_maps_003.png :alt: plot extract regions dictlearning maps :class: sphx-glr-multi-img * .. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_extract_regions_dictlearning_maps_004.png :alt: plot extract regions dictlearning maps :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Plot regions extracted for only one specific network ---------------------------------------------------- .. code-block:: default # First, we plot a network of index=4 without region extraction (left plot) from nilearn import image img = image.index_img(components_img, 4) coords = plotting.find_xyz_cut_coords(img) display = plotting.plot_stat_map(img, cut_coords=coords, colorbar=False, title='Showing one specific network') .. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_extract_regions_dictlearning_maps_005.png :alt: plot extract regions dictlearning maps :class: sphx-glr-single-img Now, we plot (right side) same network after region extraction to show that connected regions are nicely seperated. Each brain extracted region is identified as separate color. .. code-block:: default # For this, we take the indices of the all regions extracted related to original # network given as 4. regions_indices_of_map3 = np.where(np.array(regions_index) == 4) display = plotting.plot_anat(cut_coords=coords, title='Regions from this network') # Add as an overlay all the regions of index 4 colors = 'rgbcmyk' for each_index_of_map3, color in zip(regions_indices_of_map3[0], colors): display.add_overlay(image.index_img(regions_extracted_img, each_index_of_map3), cmap=plotting.cm.alpha_cmap(color)) plotting.show() .. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_extract_regions_dictlearning_maps_006.png :alt: plot extract regions dictlearning maps :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /usr/lib/python3/dist-packages/numpy/ma/core.py:2785: UserWarning: Warning: converting a masked element to nan. _data = np.array(data, dtype=dtype, copy=copy, .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 2 minutes 30.270 seconds) .. _sphx_glr_download_auto_examples_03_connectivity_plot_extract_regions_dictlearning_maps.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/03_connectivity/plot_extract_regions_dictlearning_maps.ipynb :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_extract_regions_dictlearning_maps.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_extract_regions_dictlearning_maps.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_