.. only:: html
.. note::
:class: sphx-glr-download-link-note
Click :ref:`here ` to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_03_connectivity_plot_atlas_comparison.py:
Comparing connectomes on different reference atlases
====================================================
This examples shows how to turn a parcellation into connectome for
visualization. This requires choosing centers for each parcel
or network, via :func:`nilearn.plotting.find_parcellation_cut_coords` for
parcellation based on labels and
:func:`nilearn.plotting.find_probabilistic_atlas_cut_coords` for
parcellation based on probabilistic values.
In the intermediary steps, we make use of
:class:`nilearn.input_data.NiftiLabelsMasker` and
:class:`nilearn.input_data.NiftiMapsMasker` to extract time series from nifti
objects using different parcellation atlases.
The time series of all subjects of the brain development dataset are concatenated and
given directly to :class:`nilearn.connectome.ConnectivityMeasure` for
computing parcel-wise correlation matrices for each atlas across all subjects.
Mean correlation matrix is displayed on glass brain on extracted coordinates.
# author: Amadeus Kanaan
Load atlases
-------------
.. code-block:: default
from nilearn import datasets
yeo = datasets.fetch_atlas_yeo_2011()
print('Yeo atlas nifti image (3D) with 17 parcels and liberal mask is located '
'at: %s' % yeo['thick_17'])
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Dataset created in /home/varoquau/nilearn_data/yeo_2011
Downloading data from ftp://surfer.nmr.mgh.harvard.edu/pub/data/Yeo_JNeurophysiol11_MNI152.zip ...
Downloaded 802816 of ? bytes. ...done. (3 seconds, 0 min)
Extracting data from /home/varoquau/nilearn_data/yeo_2011/d7a5390bfb7686fb41fa64cc2ba058d0/Yeo_JNeurophysiol11_MNI152.zip..... done.
Yeo atlas nifti image (3D) with 17 parcels and liberal mask is located at: /home/varoquau/nilearn_data/yeo_2011/Yeo_JNeurophysiol11_MNI152/Yeo2011_17Networks_MNI152_FreeSurferConformed1mm_LiberalMask.nii.gz
Load functional data
--------------------
.. code-block:: default
data = datasets.fetch_development_fmri(n_subjects=10)
print('Functional nifti images (4D, e.g., one subject) are located at : %r'
% data['func'][0])
print('Counfound csv files (of same subject) are located at : %r'
% data['confounds'][0])
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Functional nifti images (4D, e.g., one subject) are located at : '/home/varoquau/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz'
Counfound csv files (of same subject) are located at : '/home/varoquau/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_desc-reducedConfounds_regressors.tsv'
Extract coordinates on Yeo atlas - parcellations
------------------------------------------------
.. code-block:: default
from nilearn.input_data import NiftiLabelsMasker
from nilearn.connectome import ConnectivityMeasure
# ConenctivityMeasure from Nilearn uses simple 'correlation' to compute
# connectivity matrices for all subjects in a list
connectome_measure = ConnectivityMeasure(kind='correlation')
# useful for plotting connectivity interactions on glass brain
from nilearn import plotting
# create masker to extract functional data within atlas parcels
masker = NiftiLabelsMasker(labels_img=yeo['thick_17'], standardize=True,
memory='nilearn_cache')
# extract time series from all subjects and concatenate them
time_series = []
for func, confounds in zip(data.func, data.confounds):
time_series.append(masker.fit_transform(func, confounds=confounds))
# calculate correlation matrices across subjects and display
correlation_matrices = connectome_measure.fit_transform(time_series)
# Mean correlation matrix across 10 subjects can be grabbed like this,
# using connectome measure object
mean_correlation_matrix = connectome_measure.mean_
# grab center coordinates for atlas labels
coordinates = plotting.find_parcellation_cut_coords(labels_img=yeo['thick_17'])
# plot connectome with 80% edge strength in the connectivity
plotting.plot_connectome(mean_correlation_matrix, coordinates,
edge_threshold="80%",
title='Yeo Atlas 17 thick (func)')
.. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_atlas_comparison_001.png
:alt: plot atlas comparison
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Load probabilistic atlases - extracting coordinates on brain maps
-----------------------------------------------------------------
.. code-block:: default
msdl = datasets.fetch_atlas_msdl()
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
/usr/lib/python3/dist-packages/numpy/lib/npyio.py:2358: VisibleDeprecationWarning: Reading unicode strings without specifying the encoding argument is deprecated. Set the encoding, use None for the system default.
output = genfromtxt(fname, **kwargs)
Iterate over fetched atlases to extract coordinates - probabilistic
-------------------------------------------------------------------
.. code-block:: default
from nilearn.input_data import NiftiMapsMasker
# create masker to extract functional data within atlas parcels
masker = NiftiMapsMasker(maps_img=msdl['maps'], standardize=True,
memory='nilearn_cache')
# extract time series from all subjects and concatenate them
time_series = []
for func, confounds in zip(data.func, data.confounds):
time_series.append(masker.fit_transform(func, confounds=confounds))
# calculate correlation matrices across subjects and display
correlation_matrices = connectome_measure.fit_transform(time_series)
# Mean correlation matrix across 10 subjects can be grabbed like this,
# using connectome measure object
mean_correlation_matrix = connectome_measure.mean_
# grab center coordinates for probabilistic atlas
coordinates = plotting.find_probabilistic_atlas_cut_coords(maps_img=msdl['maps'])
# plot connectome with 80% edge strength in the connectivity
plotting.plot_connectome(mean_correlation_matrix, coordinates,
edge_threshold="80%", title='MSDL (probabilistic)')
plotting.show()
.. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_atlas_comparison_002.png
:alt: plot atlas comparison
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
/home/varoquau/dev/nilearn/nilearn/_utils/cache_mixin.py:295: UserWarning: memory_level is currently set to 0 but a Memory object has been provided. Setting memory_level to 1.
warnings.warn("memory_level is currently set to 0 but "
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 1 minutes 24.161 seconds)
.. _sphx_glr_download_auto_examples_03_connectivity_plot_atlas_comparison.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: binder-badge
.. image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/03_connectivity/plot_atlas_comparison.ipynb
:width: 150 px
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: plot_atlas_comparison.py `
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: plot_atlas_comparison.ipynb `
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery `_