.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_03_connectivity_plot_atlas_comparison.py: Comparing connectomes on different reference atlases ==================================================== This examples shows how to turn a parcellation into connectome for visualization. This requires choosing centers for each parcel or network, via :func:`nilearn.plotting.find_parcellation_cut_coords` for parcellation based on labels and :func:`nilearn.plotting.find_probabilistic_atlas_cut_coords` for parcellation based on probabilistic values. In the intermediary steps, we make use of :class:`nilearn.input_data.NiftiLabelsMasker` and :class:`nilearn.input_data.NiftiMapsMasker` to extract time series from nifti objects using different parcellation atlases. The time series of all subjects of the brain development dataset are concatenated and given directly to :class:`nilearn.connectome.ConnectivityMeasure` for computing parcel-wise correlation matrices for each atlas across all subjects. Mean correlation matrix is displayed on glass brain on extracted coordinates. # author: Amadeus Kanaan Load atlases ------------- .. code-block:: default from nilearn import datasets yeo = datasets.fetch_atlas_yeo_2011() print('Yeo atlas nifti image (3D) with 17 parcels and liberal mask is located ' 'at: %s' % yeo['thick_17']) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Dataset created in /home/varoquau/nilearn_data/yeo_2011 Downloading data from ftp://surfer.nmr.mgh.harvard.edu/pub/data/Yeo_JNeurophysiol11_MNI152.zip ... Downloaded 802816 of ? bytes. ...done. (3 seconds, 0 min) Extracting data from /home/varoquau/nilearn_data/yeo_2011/d7a5390bfb7686fb41fa64cc2ba058d0/Yeo_JNeurophysiol11_MNI152.zip..... done. Yeo atlas nifti image (3D) with 17 parcels and liberal mask is located at: /home/varoquau/nilearn_data/yeo_2011/Yeo_JNeurophysiol11_MNI152/Yeo2011_17Networks_MNI152_FreeSurferConformed1mm_LiberalMask.nii.gz Load functional data -------------------- .. code-block:: default data = datasets.fetch_development_fmri(n_subjects=10) print('Functional nifti images (4D, e.g., one subject) are located at : %r' % data['func'][0]) print('Counfound csv files (of same subject) are located at : %r' % data['confounds'][0]) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Functional nifti images (4D, e.g., one subject) are located at : '/home/varoquau/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz' Counfound csv files (of same subject) are located at : '/home/varoquau/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_desc-reducedConfounds_regressors.tsv' Extract coordinates on Yeo atlas - parcellations ------------------------------------------------ .. code-block:: default from nilearn.input_data import NiftiLabelsMasker from nilearn.connectome import ConnectivityMeasure # ConenctivityMeasure from Nilearn uses simple 'correlation' to compute # connectivity matrices for all subjects in a list connectome_measure = ConnectivityMeasure(kind='correlation') # useful for plotting connectivity interactions on glass brain from nilearn import plotting # create masker to extract functional data within atlas parcels masker = NiftiLabelsMasker(labels_img=yeo['thick_17'], standardize=True, memory='nilearn_cache') # extract time series from all subjects and concatenate them time_series = [] for func, confounds in zip(data.func, data.confounds): time_series.append(masker.fit_transform(func, confounds=confounds)) # calculate correlation matrices across subjects and display correlation_matrices = connectome_measure.fit_transform(time_series) # Mean correlation matrix across 10 subjects can be grabbed like this, # using connectome measure object mean_correlation_matrix = connectome_measure.mean_ # grab center coordinates for atlas labels coordinates = plotting.find_parcellation_cut_coords(labels_img=yeo['thick_17']) # plot connectome with 80% edge strength in the connectivity plotting.plot_connectome(mean_correlation_matrix, coordinates, edge_threshold="80%", title='Yeo Atlas 17 thick (func)') .. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_atlas_comparison_001.png :alt: plot atlas comparison :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Load probabilistic atlases - extracting coordinates on brain maps ----------------------------------------------------------------- .. code-block:: default msdl = datasets.fetch_atlas_msdl() .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /usr/lib/python3/dist-packages/numpy/lib/npyio.py:2358: VisibleDeprecationWarning: Reading unicode strings without specifying the encoding argument is deprecated. Set the encoding, use None for the system default. output = genfromtxt(fname, **kwargs) Iterate over fetched atlases to extract coordinates - probabilistic ------------------------------------------------------------------- .. code-block:: default from nilearn.input_data import NiftiMapsMasker # create masker to extract functional data within atlas parcels masker = NiftiMapsMasker(maps_img=msdl['maps'], standardize=True, memory='nilearn_cache') # extract time series from all subjects and concatenate them time_series = [] for func, confounds in zip(data.func, data.confounds): time_series.append(masker.fit_transform(func, confounds=confounds)) # calculate correlation matrices across subjects and display correlation_matrices = connectome_measure.fit_transform(time_series) # Mean correlation matrix across 10 subjects can be grabbed like this, # using connectome measure object mean_correlation_matrix = connectome_measure.mean_ # grab center coordinates for probabilistic atlas coordinates = plotting.find_probabilistic_atlas_cut_coords(maps_img=msdl['maps']) # plot connectome with 80% edge strength in the connectivity plotting.plot_connectome(mean_correlation_matrix, coordinates, edge_threshold="80%", title='MSDL (probabilistic)') plotting.show() .. image:: /auto_examples/03_connectivity/images/sphx_glr_plot_atlas_comparison_002.png :alt: plot atlas comparison :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/varoquau/dev/nilearn/nilearn/_utils/cache_mixin.py:295: UserWarning: memory_level is currently set to 0 but a Memory object has been provided. Setting memory_level to 1. warnings.warn("memory_level is currently set to 0 but " .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 1 minutes 24.161 seconds) .. _sphx_glr_download_auto_examples_03_connectivity_plot_atlas_comparison.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/03_connectivity/plot_atlas_comparison.ipynb :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_atlas_comparison.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_atlas_comparison.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_