.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_02_decoding_plot_oasis_vbm.py: Voxel-Based Morphometry on Oasis dataset ======================================== This example uses Voxel-Based Morphometry (VBM) to study the relationship between aging and gray matter density. The data come from the `OASIS `_ project. If you use it, you need to agree with the data usage agreement available on the website. It has been run through a standard VBM pipeline (using SPM8 and NewSegment) to create VBM maps, which we study here. Predictive modeling analysis: VBM bio-markers of aging? -------------------------------------------------------- We run a standard SVM-ANOVA nilearn pipeline to predict age from the VBM data. We use only 100 subjects from the OASIS dataset to limit the memory usage. Note that for an actual predictive modeling study of aging, the study should be ran on the full set of subjects. Also, all parameters should be set by cross-validation. This includes the smoothing applied to the data and the number of features selected by the ANOVA step. Indeed, even these data-preparation parameter impact significantly the prediction score. Also, parameters such as the smoothing should be applied to the data and the number of features selected by the ANOVA step should be set by nested cross-validation, as they impact significantly the prediction score. Brain mapping with mass univariate ----------------------------------- SVM weights are very noisy, partly because heavy smoothing is detrimental for the prediction here. A standard analysis using mass-univariate GLM (here permuted to have exact correction for multiple comparisons) gives a much clearer view of the important regions. ____ .. code-block:: default # Authors: Elvis Dhomatob, , Apr. 2014 # Virgile Fritsch, , Apr 2014 # Gael Varoquaux, Apr 2014 # Andres Hoyos-Idrobo, Apr 2017 import numpy as np import matplotlib.pyplot as plt from nilearn import datasets from nilearn.input_data import NiftiMasker from nilearn.image import get_data n_subjects = 100 # more subjects requires more memory Load Oasis dataset ------------------- .. code-block:: default oasis_dataset = datasets.fetch_oasis_vbm(n_subjects=n_subjects) gray_matter_map_filenames = oasis_dataset.gray_matter_maps age = oasis_dataset.ext_vars['age'].astype(float) # Split data into training set and test set from sklearn.model_selection import train_test_split gm_imgs_train, gm_imgs_test, age_train, age_test = train_test_split( gray_matter_map_filenames, age, train_size=.6, random_state=0) # print basic information on the dataset print('First gray-matter anatomy image (3D) is located at: %s' % oasis_dataset.gray_matter_maps[0]) # 3D data print('First white-matter anatomy image (3D) is located at: %s' % oasis_dataset.white_matter_maps[0]) # 3D data .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /usr/lib/python3/dist-packages/numpy/lib/npyio.py:2358: VisibleDeprecationWarning: Reading unicode strings without specifying the encoding argument is deprecated. Set the encoding, use None for the system default. output = genfromtxt(fname, **kwargs) First gray-matter anatomy image (3D) is located at: /home/varoquau/nilearn_data/oasis1/OAS1_0001_MR1/mwrc1OAS1_0001_MR1_mpr_anon_fslswapdim_bet.nii.gz First white-matter anatomy image (3D) is located at: /home/varoquau/nilearn_data/oasis1/OAS1_0001_MR1/mwrc2OAS1_0001_MR1_mpr_anon_fslswapdim_bet.nii.gz Preprocess data ---------------- .. code-block:: default nifti_masker = NiftiMasker( standardize=False, smoothing_fwhm=2, memory='nilearn_cache') # cache options gm_maps_masked = nifti_masker.fit_transform(gm_imgs_train) # The features with too low between-subject variance are removed using # :class:`sklearn.feature_selection.VarianceThreshold`. from sklearn.feature_selection import VarianceThreshold variance_threshold = VarianceThreshold(threshold=.01) gm_maps_thresholded = variance_threshold.fit_transform(gm_maps_masked) gm_maps_masked = variance_threshold.inverse_transform(gm_maps_thresholded) # Then we convert the data back to the mask image in order to use it for # decoding process mask = nifti_masker.inverse_transform(variance_threshold.get_support()) Prediction pipeline with ANOVA and SVR using :class:`nilearn.decoding.DecoderRegressor` Object .. code-block:: default # In nilearn we can benefit from the built-in DecoderRegressor object to # do ANOVA with SVR instead of manually defining the whole pipeline. # This estimator also uses Cross Validation to select best models and ensemble # them. Furthermore, you can pass n_jobs= to the # DecoderRegressor class to take advantage of a multi-core system. # To save time (because these are anat images with many voxels), we include # only the 1-percent voxels most correlated with the age variable to fit. We # also want to set mask hyperparameter to be the mask we just obtained above. from nilearn.decoding import DecoderRegressor decoder = DecoderRegressor(estimator='svr', mask=mask, scoring='neg_mean_absolute_error', screening_percentile=1, n_jobs=1) # Fit and predict with the decoder decoder.fit(gm_imgs_train, age_train) # Sort test data for better visualization (trend, etc.) perm = np.argsort(age_test)[::-1] age_test = age_test[perm] gm_imgs_test = np.array(gm_imgs_test)[perm] age_pred = decoder.predict(gm_imgs_test) prediction_score = -np.mean(decoder.cv_scores_['beta']) print("=== DECODER ===") print("explained variance for the cross-validation: %f" % prediction_score) print("") .. rst-class:: sphx-glr-script-out Out: .. code-block:: none === DECODER === explained variance for the cross-validation: 10.670598 Visualization -------------- .. code-block:: default weight_img = decoder.coef_img_['beta'] # Create the figure from nilearn.plotting import plot_stat_map, show bg_filename = gray_matter_map_filenames[0] z_slice = 0 display = plot_stat_map(weight_img, bg_img=bg_filename, display_mode='z', cut_coords=[z_slice]) display.title("SVM weights") show() .. image:: /auto_examples/02_decoding/images/sphx_glr_plot_oasis_vbm_001.png :alt: plot oasis vbm :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/varoquau/dev/nilearn/nilearn/plotting/displays.py:1608: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance. ax = fh.add_axes([fraction * index * (x1 - x0) + x0, y0, Visualize the quality of predictions ------------------------------------- .. code-block:: default plt.figure(figsize=(6, 4.5)) plt.suptitle("Decoder: Mean Absolute Error %.2f years" % prediction_score) linewidth = 3 plt.plot(age_test, label="True age", linewidth=linewidth) plt.plot(age_pred, '--', c="g", label="Predicted age", linewidth=linewidth) plt.ylabel("age") plt.xlabel("subject") plt.legend(loc="best") plt.figure(figsize=(6, 4.5)) plt.plot(age_test - age_pred, label="True age - predicted age", linewidth=linewidth) plt.xlabel("subject") plt.legend(loc="best") .. rst-class:: sphx-glr-horizontal * .. image:: /auto_examples/02_decoding/images/sphx_glr_plot_oasis_vbm_002.png :alt: Decoder: Mean Absolute Error 10.67 years :class: sphx-glr-multi-img * .. image:: /auto_examples/02_decoding/images/sphx_glr_plot_oasis_vbm_003.png :alt: plot oasis vbm :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Inference with massively univariate model ----------------------------------------- .. code-block:: default print("Massively univariate model") gm_maps_masked = NiftiMasker().fit_transform(gray_matter_map_filenames) data = variance_threshold.fit_transform(gm_maps_masked) # Statistical inference from nilearn.mass_univariate import permuted_ols neg_log_pvals, t_scores_original_data, _ = permuted_ols( age, data, # + intercept as a covariate by default n_perm=2000, # 1,000 in the interest of time; 10000 would be better n_jobs=1) # can be changed to use more CPUs signed_neg_log_pvals = neg_log_pvals * np.sign(t_scores_original_data) signed_neg_log_pvals_unmasked = nifti_masker.inverse_transform( variance_threshold.inverse_transform(signed_neg_log_pvals)) # Show results threshold = -np.log10(0.1) # 10% corrected fig = plt.figure(figsize=(5.5, 7.5), facecolor='k') display = plot_stat_map(signed_neg_log_pvals_unmasked, bg_img=bg_filename, threshold=threshold, cmap=plt.cm.RdBu_r, display_mode='z', cut_coords=[z_slice], figure=fig) title = ('Negative $\\log_{10}$ p-values' '\n(Non-parametric + max-type correction)') display.title(title, y=1.2) n_detections = (get_data(signed_neg_log_pvals_unmasked) > threshold).sum() print('\n%d detections' % n_detections) show() .. image:: /auto_examples/02_decoding/images/sphx_glr_plot_oasis_vbm_004.png :alt: plot oasis vbm :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Massively univariate model /home/varoquau/dev/nilearn/nilearn/plotting/displays.py:1608: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance. ax = fh.add_axes([fraction * index * (x1 - x0) + x0, y0, 1978 detections .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 1 minutes 24.211 seconds) .. _sphx_glr_download_auto_examples_02_decoding_plot_oasis_vbm.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/02_decoding/plot_oasis_vbm.ipynb :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_oasis_vbm.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_oasis_vbm.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_