.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_02_decoding_plot_haxby_stimuli.py: Show stimuli of Haxby et al. dataset =============================================================================== In this script we plot an overview of the stimuli used in "Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex" (Science 2001) .. rst-class:: sphx-glr-horizontal * .. image:: /auto_examples/02_decoding/images/sphx_glr_plot_haxby_stimuli_001.png :alt: shoes :class: sphx-glr-multi-img * .. image:: /auto_examples/02_decoding/images/sphx_glr_plot_haxby_stimuli_002.png :alt: scissors :class: sphx-glr-multi-img * .. image:: /auto_examples/02_decoding/images/sphx_glr_plot_haxby_stimuli_003.png :alt: houses :class: sphx-glr-multi-img * .. image:: /auto_examples/02_decoding/images/sphx_glr_plot_haxby_stimuli_004.png :alt: faces :class: sphx-glr-multi-img * .. image:: /auto_examples/02_decoding/images/sphx_glr_plot_haxby_stimuli_005.png :alt: chairs :class: sphx-glr-multi-img * .. image:: /auto_examples/02_decoding/images/sphx_glr_plot_haxby_stimuli_006.png :alt: cats :class: sphx-glr-multi-img * .. image:: /auto_examples/02_decoding/images/sphx_glr_plot_haxby_stimuli_007.png :alt: bottles :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Downloading data from http://data.pymvpa.org/datasets/haxby2001/stimuli-2010.01.14.tar.gz ... ...done. (1 seconds, 0 min) Extracting data from /home/varoquau/nilearn_data/haxby2001/5cd78c74b711572c7f41a5bddb69abca/stimuli-2010.01.14.tar.gz..... done. | .. code-block:: default import matplotlib.pyplot as plt from nilearn import datasets from nilearn.plotting import show haxby_dataset = datasets.fetch_haxby(subjects=[], fetch_stimuli=True) stimulus_information = haxby_dataset.stimuli for stim_type in stimulus_information: # skip control images, there are too many if stim_type != 'controls': file_names = stimulus_information[stim_type] fig, axes = plt.subplots(6, 8) fig.suptitle(stim_type) for img_path, ax in zip(file_names, axes.ravel()): ax.imshow(plt.imread(img_path), cmap=plt.cm.gray) for ax in axes.ravel(): ax.axis("off") show() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 8.435 seconds) .. _sphx_glr_download_auto_examples_02_decoding_plot_haxby_stimuli.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/02_decoding/plot_haxby_stimuli.ipynb :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_haxby_stimuli.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_haxby_stimuli.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_