.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_02_decoding_plot_haxby_multiclass.py: The haxby dataset: different multi-class strategies ======================================================= We compare one vs all and one vs one multi-class strategies: the overall cross-validated accuracy and the confusion matrix. Load the Haxby data dataset ---------------------------- .. code-block:: default from nilearn import datasets import numpy as np import pandas as pd # By default 2nd subject from haxby datasets will be fetched. haxby_dataset = datasets.fetch_haxby() # Print basic information on the dataset print('Mask nifti images are located at: %s' % haxby_dataset.mask) print('Functional nifti images are located at: %s' % haxby_dataset.func[0]) func_filename = haxby_dataset.func[0] mask_filename = haxby_dataset.mask # Load the behavioral data that we will predict labels = pd.read_csv(haxby_dataset.session_target[0], sep=" ") y = labels['labels'] session = labels['chunks'] # Remove the rest condition, it is not very interesting non_rest = (y != 'rest') y = y[non_rest] # Get the labels of the numerical conditions represented by the vector y unique_conditions, order = np.unique(y, return_index=True) # Sort the conditions by the order of appearance unique_conditions = unique_conditions[np.argsort(order)] .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Mask nifti images are located at: /home/varoquau/nilearn_data/haxby2001/mask.nii.gz Functional nifti images are located at: /home/varoquau/nilearn_data/haxby2001/subj2/bold.nii.gz Prepare the fMRI data ---------------------- .. code-block:: default from nilearn.input_data import NiftiMasker # For decoding, standardizing is often very important nifti_masker = NiftiMasker(mask_img=mask_filename, standardize=True, sessions=session, smoothing_fwhm=4, memory="nilearn_cache", memory_level=1) X = nifti_masker.fit_transform(func_filename) # Remove the "rest" condition X = X[non_rest] session = session[non_rest] Build the decoders, using scikit-learn ---------------------------------------- Here we use a Support Vector Classification, with a linear kernel, and a simple feature selection step .. code-block:: default from sklearn.svm import SVC from sklearn.feature_selection import SelectKBest, f_classif from sklearn.multiclass import OneVsOneClassifier, OneVsRestClassifier from sklearn.pipeline import Pipeline svc_ovo = OneVsOneClassifier(Pipeline([ ('anova', SelectKBest(f_classif, k=500)), ('svc', SVC(kernel='linear')) ])) svc_ova = OneVsRestClassifier(Pipeline([ ('anova', SelectKBest(f_classif, k=500)), ('svc', SVC(kernel='linear')) ])) Now we compute cross-validation scores ---------------------------------------- .. code-block:: default from sklearn.model_selection import cross_val_score cv_scores_ovo = cross_val_score(svc_ovo, X, y, cv=5, verbose=1) cv_scores_ova = cross_val_score(svc_ova, X, y, cv=5, verbose=1) print('OvO:', cv_scores_ovo.mean()) print('OvA:', cv_scores_ova.mean()) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers. [Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 18.9s finished [Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers. [Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 11.5s finished OvO: 0.601855088049469 OvA: 0.6712058072321548 Plot barplots of the prediction scores ---------------------------------------- .. code-block:: default from matplotlib import pyplot as plt plt.figure(figsize=(4, 3)) plt.boxplot([cv_scores_ova, cv_scores_ovo]) plt.xticks([1, 2], ['One vs All', 'One vs One']) plt.title('Prediction: accuracy score') .. image:: /auto_examples/02_decoding/images/sphx_glr_plot_haxby_multiclass_001.png :alt: Prediction: accuracy score :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Text(0.5, 1.0, 'Prediction: accuracy score') Plot a confusion matrix ------------------------ We fit on the the first 10 sessions and plot a confusion matrix on the last 2 sessions .. code-block:: default from sklearn.metrics import confusion_matrix from nilearn.plotting import plot_matrix, show svc_ovo.fit(X[session < 10], y[session < 10]) y_pred_ovo = svc_ovo.predict(X[session >= 10]) plot_matrix(confusion_matrix(y_pred_ovo, y[session >= 10]), labels=unique_conditions, title='Confusion matrix: One vs One', cmap='hot_r') svc_ova.fit(X[session < 10], y[session < 10]) y_pred_ova = svc_ova.predict(X[session >= 10]) plot_matrix(confusion_matrix(y_pred_ova, y[session >= 10]), labels=unique_conditions, title='Confusion matrix: One vs All', cmap='hot_r') show() .. rst-class:: sphx-glr-horizontal * .. image:: /auto_examples/02_decoding/images/sphx_glr_plot_haxby_multiclass_002.png :alt: plot haxby multiclass :class: sphx-glr-multi-img * .. image:: /auto_examples/02_decoding/images/sphx_glr_plot_haxby_multiclass_003.png :alt: plot haxby multiclass :class: sphx-glr-multi-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 56.827 seconds) .. _sphx_glr_download_auto_examples_02_decoding_plot_haxby_multiclass.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/02_decoding/plot_haxby_multiclass.ipynb :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_haxby_multiclass.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_haxby_multiclass.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_