.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_02_decoding_plot_haxby_full_analysis.py: ROI-based decoding analysis in Haxby et al. dataset ===================================================== In this script we reproduce the data analysis conducted by Haxby et al. in "Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex". Specifically, we look at decoding accuracy for different objects in three different masks: the full ventral stream (mask_vt), the house selective areas (mask_house) and the face selective areas (mask_face), that have been defined via a standard GLM-based analysis. Load and prepare the data ----------------------------------- .. code-block:: default # Fetch data using nilearn dataset fetcher from nilearn import datasets # by default we fetch 2nd subject data for analysis haxby_dataset = datasets.fetch_haxby() func_filename = haxby_dataset.func[0] # Print basic information on the dataset print('First subject anatomical nifti image (3D) located is at: %s' % haxby_dataset.anat[0]) print('First subject functional nifti image (4D) is located at: %s' % func_filename) # Load nilearn NiftiMasker, the practical masking and unmasking tool from nilearn.input_data import NiftiMasker # load labels import pandas as pd labels = pd.read_csv(haxby_dataset.session_target[0], sep=" ") stimuli = labels['labels'] # identify resting state labels in order to be able to remove them task_mask = (stimuli != 'rest') # find names of remaining active labels categories = stimuli[task_mask].unique() # extract tags indicating to which acquisition run a tag belongs session_labels = labels["chunks"][task_mask] # apply the task_mask to fMRI data (func_filename) from nilearn.image import index_img task_data = index_img(func_filename, task_mask) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none First subject anatomical nifti image (3D) located is at: /home/varoquau/nilearn_data/haxby2001/subj2/anat.nii.gz First subject functional nifti image (4D) is located at: /home/varoquau/nilearn_data/haxby2001/subj2/bold.nii.gz Decoding on the different masks -------------------------------- The classifier used here is a support vector classifier (svc). We use class:`nilearn.decoding.Decoder` and specify the classifier. .. code-block:: default import numpy as np from nilearn.decoding import Decoder # Make a data splitting object for cross validation from sklearn.model_selection import LeaveOneGroupOut, cross_val_score cv = LeaveOneGroupOut() We use :class:`sklearn.dummy.DummyClassifier` as a baseline. .. code-block:: default from sklearn.dummy import DummyClassifier dummy_classifier = DummyClassifier() mask_names = ['mask_vt', 'mask_face', 'mask_house'] mask_scores = {} mask_chance_scores = {} for mask_name in mask_names: print("Working on %s" % mask_name) # For decoding, standardizing is often very important mask_filename = haxby_dataset[mask_name][0] masker = NiftiMasker(mask_img=mask_filename, standardize=True) masked_timecourses = masker.fit_transform(func_filename)[task_mask] mask_scores[mask_name] = {} mask_chance_scores[mask_name] = {} for category in categories: print("Processing %s %s" % (mask_name, category)) classification_target = (stimuli[task_mask] == category) # Specify the classifier to the decoder object. # With the decoder we can input the masker directly. # We are using the svc_l1 here because it is intra subject. decoder = Decoder(estimator='svc_l1', cv=cv, mask=masker, scoring='roc_auc') decoder.fit(task_data, classification_target, groups=session_labels) mask_scores[mask_name][category] = decoder.cv_scores_[1] print("Scores: %1.2f +- %1.2f" % ( np.mean(mask_scores[mask_name][category]), np.std(mask_scores[mask_name][category]))) mask_chance_scores[mask_name][category] = cross_val_score( dummy_classifier, masked_timecourses, classification_target, cv=cv, groups=session_labels, scoring="roc_auc", ) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Working on mask_vt Processing mask_vt scissors Scores: 0.92 +- 0.05 Processing mask_vt face Scores: 0.98 +- 0.03 Processing mask_vt cat Scores: 0.96 +- 0.04 Processing mask_vt shoe Scores: 0.92 +- 0.07 Processing mask_vt house Scores: 1.00 +- 0.00 Processing mask_vt scrambledpix Scores: 0.99 +- 0.01 Processing mask_vt bottle Scores: 0.89 +- 0.08 Processing mask_vt chair Scores: 0.93 +- 0.04 Working on mask_face Processing mask_face scissors /home/varoquau/dev/nilearn/nilearn/_utils/param_validation.py:191: UserWarning: Brain mask is smaller than .5% of the volume human brain. This object is probably not tuned tobe used on such data. screening_percentile_ = _adjust_screening_percentile( /home/varoquau/dev/nilearn/nilearn/decoding/decoder.py:491: UserWarning: After clustering and screening, the decoding model will be trained only on 30 features. Consider raising clustering_percentile or screening_percentile parameters warnings.warn( Scores: 0.70 +- 0.16 Processing mask_face face /home/varoquau/dev/nilearn/nilearn/_utils/param_validation.py:191: UserWarning: Brain mask is smaller than .5% of the volume human brain. This object is probably not tuned tobe used on such data. screening_percentile_ = _adjust_screening_percentile( /home/varoquau/dev/nilearn/nilearn/decoding/decoder.py:491: UserWarning: After clustering and screening, the decoding model will be trained only on 30 features. Consider raising clustering_percentile or screening_percentile parameters warnings.warn( Scores: 0.90 +- 0.06 Processing mask_face cat /home/varoquau/dev/nilearn/nilearn/_utils/param_validation.py:191: UserWarning: Brain mask is smaller than .5% of the volume human brain. This object is probably not tuned tobe used on such data. screening_percentile_ = _adjust_screening_percentile( /home/varoquau/dev/nilearn/nilearn/decoding/decoder.py:491: UserWarning: After clustering and screening, the decoding model will be trained only on 30 features. Consider raising clustering_percentile or screening_percentile parameters warnings.warn( Scores: 0.76 +- 0.12 Processing mask_face shoe /home/varoquau/dev/nilearn/nilearn/_utils/param_validation.py:191: UserWarning: Brain mask is smaller than .5% of the volume human brain. This object is probably not tuned tobe used on such data. screening_percentile_ = _adjust_screening_percentile( /home/varoquau/dev/nilearn/nilearn/decoding/decoder.py:491: UserWarning: After clustering and screening, the decoding model will be trained only on 30 features. Consider raising clustering_percentile or screening_percentile parameters warnings.warn( Scores: 0.73 +- 0.17 Processing mask_face house /home/varoquau/dev/nilearn/nilearn/_utils/param_validation.py:191: UserWarning: Brain mask is smaller than .5% of the volume human brain. This object is probably not tuned tobe used on such data. screening_percentile_ = _adjust_screening_percentile( /home/varoquau/dev/nilearn/nilearn/decoding/decoder.py:491: UserWarning: After clustering and screening, the decoding model will be trained only on 30 features. Consider raising clustering_percentile or screening_percentile parameters warnings.warn( Scores: 0.71 +- 0.16 Processing mask_face scrambledpix /home/varoquau/dev/nilearn/nilearn/_utils/param_validation.py:191: UserWarning: Brain mask is smaller than .5% of the volume human brain. This object is probably not tuned tobe used on such data. screening_percentile_ = _adjust_screening_percentile( /home/varoquau/dev/nilearn/nilearn/decoding/decoder.py:491: UserWarning: After clustering and screening, the decoding model will be trained only on 30 features. Consider raising clustering_percentile or screening_percentile parameters warnings.warn( Scores: 0.87 +- 0.09 Processing mask_face bottle /home/varoquau/dev/nilearn/nilearn/_utils/param_validation.py:191: UserWarning: Brain mask is smaller than .5% of the volume human brain. This object is probably not tuned tobe used on such data. screening_percentile_ = _adjust_screening_percentile( /home/varoquau/dev/nilearn/nilearn/decoding/decoder.py:491: UserWarning: After clustering and screening, the decoding model will be trained only on 30 features. Consider raising clustering_percentile or screening_percentile parameters warnings.warn( Scores: 0.67 +- 0.17 Processing mask_face chair /home/varoquau/dev/nilearn/nilearn/_utils/param_validation.py:191: UserWarning: Brain mask is smaller than .5% of the volume human brain. This object is probably not tuned tobe used on such data. screening_percentile_ = _adjust_screening_percentile( /home/varoquau/dev/nilearn/nilearn/decoding/decoder.py:491: UserWarning: After clustering and screening, the decoding model will be trained only on 30 features. Consider raising clustering_percentile or screening_percentile parameters warnings.warn( Scores: 0.63 +- 0.10 Working on mask_house Processing mask_house scissors /home/varoquau/dev/nilearn/nilearn/_utils/param_validation.py:191: UserWarning: Brain mask is smaller than .5% of the volume human brain. This object is probably not tuned tobe used on such data. screening_percentile_ = _adjust_screening_percentile( Scores: 0.83 +- 0.08 Processing mask_house face /home/varoquau/dev/nilearn/nilearn/_utils/param_validation.py:191: UserWarning: Brain mask is smaller than .5% of the volume human brain. This object is probably not tuned tobe used on such data. screening_percentile_ = _adjust_screening_percentile( Scores: 0.90 +- 0.07 Processing mask_house cat /home/varoquau/dev/nilearn/nilearn/_utils/param_validation.py:191: UserWarning: Brain mask is smaller than .5% of the volume human brain. This object is probably not tuned tobe used on such data. screening_percentile_ = _adjust_screening_percentile( Scores: 0.86 +- 0.09 Processing mask_house shoe /home/varoquau/dev/nilearn/nilearn/_utils/param_validation.py:191: UserWarning: Brain mask is smaller than .5% of the volume human brain. This object is probably not tuned tobe used on such data. screening_percentile_ = _adjust_screening_percentile( Scores: 0.82 +- 0.12 Processing mask_house house /home/varoquau/dev/nilearn/nilearn/_utils/param_validation.py:191: UserWarning: Brain mask is smaller than .5% of the volume human brain. This object is probably not tuned tobe used on such data. screening_percentile_ = _adjust_screening_percentile( Scores: 1.00 +- 0.00 Processing mask_house scrambledpix /home/varoquau/dev/nilearn/nilearn/_utils/param_validation.py:191: UserWarning: Brain mask is smaller than .5% of the volume human brain. This object is probably not tuned tobe used on such data. screening_percentile_ = _adjust_screening_percentile( Scores: 0.96 +- 0.05 Processing mask_house bottle /home/varoquau/dev/nilearn/nilearn/_utils/param_validation.py:191: UserWarning: Brain mask is smaller than .5% of the volume human brain. This object is probably not tuned tobe used on such data. screening_percentile_ = _adjust_screening_percentile( Scores: 0.86 +- 0.10 Processing mask_house chair /home/varoquau/dev/nilearn/nilearn/_utils/param_validation.py:191: UserWarning: Brain mask is smaller than .5% of the volume human brain. This object is probably not tuned tobe used on such data. screening_percentile_ = _adjust_screening_percentile( Scores: 0.90 +- 0.10 We make a simple bar plot to summarize the results --------------------------------------------------- .. code-block:: default import matplotlib.pyplot as plt from nilearn.plotting import show plt.figure() tick_position = np.arange(len(categories)) plt.xticks(tick_position, categories, rotation=45) for color, mask_name in zip('rgb', mask_names): score_means = [np.mean(mask_scores[mask_name][category]) for category in categories] plt.bar(tick_position, score_means, label=mask_name, width=.25, color=color) score_chance = [np.mean(mask_chance_scores[mask_name][category]) for category in categories] plt.bar(tick_position, score_chance, width=.25, edgecolor='k', facecolor='none') tick_position = tick_position + .2 plt.ylabel('Classification accurancy (AUC score)') plt.xlabel('Visual stimuli category') plt.ylim(0.3, 1) plt.legend(loc='lower right') plt.title('Category-specific classification accuracy for different masks') plt.tight_layout() show() .. image:: /auto_examples/02_decoding/images/sphx_glr_plot_haxby_full_analysis_001.png :alt: Category-specific classification accuracy for different masks :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 2 minutes 32.632 seconds) .. _sphx_glr_download_auto_examples_02_decoding_plot_haxby_full_analysis.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/02_decoding/plot_haxby_full_analysis.ipynb :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_haxby_full_analysis.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_haxby_full_analysis.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_