.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_02_decoding_plot_haxby_different_estimators.py: Different classifiers in decoding the Haxby dataset ===================================================== Here we compare different classifiers on a visual object recognition decoding task. Loading the data ----------------- .. code-block:: default # We start by loading data using nilearn dataset fetcher from nilearn import datasets from nilearn.image import get_data # by default 2nd subject data will be fetched haxby_dataset = datasets.fetch_haxby() # print basic information on the dataset print('First subject anatomical nifti image (3D) located is at: %s' % haxby_dataset.anat[0]) print('First subject functional nifti image (4D) is located at: %s' % haxby_dataset.func[0]) # load labels import numpy as np import pandas as pd labels = pd.read_csv(haxby_dataset.session_target[0], sep=" ") stimuli = labels['labels'] # identify resting state (baseline) labels in order to be able to remove them resting_state = (stimuli == 'rest') # extract the indices of the images corresponding to some condition or task task_mask = np.logical_not(resting_state) # find names of remaining active labels categories = stimuli[task_mask].unique() # extract tags indicating to which acquisition run a tag belongs session_labels = labels['chunks'][task_mask] # Load the fMRI data # For decoding, standardizing is often very important mask_filename = haxby_dataset.mask_vt[0] func_filename = haxby_dataset.func[0] # Because the data is in one single large 4D image, we need to use # index_img to do the split easily. from nilearn.image import index_img fmri_niimgs = index_img(func_filename, task_mask) classification_target = stimuli[task_mask] .. rst-class:: sphx-glr-script-out Out: .. code-block:: none First subject anatomical nifti image (3D) located is at: /home/varoquau/nilearn_data/haxby2001/subj2/anat.nii.gz First subject functional nifti image (4D) is located at: /home/varoquau/nilearn_data/haxby2001/subj2/bold.nii.gz Training the decoder --------------------- .. code-block:: default # Then we define the various classifiers that we use classifiers = ['svc_l2', 'svc_l1', 'logistic_l1', 'logistic_l2', 'ridge_classifier'] # Here we compute prediction scores and run time for all these # classifiers import time from nilearn.decoding import Decoder from sklearn.model_selection import LeaveOneGroupOut cv = LeaveOneGroupOut() classifiers_data = {} for classifier_name in sorted(classifiers): classifiers_data[classifier_name] = {} print(70 * '_') # The decoder has as default score the `roc_auc` decoder = Decoder(estimator=classifier_name, mask=mask_filename, standardize=True, cv=cv) t0 = time.time() decoder.fit(fmri_niimgs, classification_target, groups=session_labels) classifiers_data[classifier_name] = {} classifiers_data[classifier_name]['score'] = decoder.cv_scores_ classifiers_data[classifier_name]['map'] = decoder.coef_img_['house'] print("%10s: %.2fs" % (classifier_name, time.time() - t0)) for category in categories: print(" %14s vs all -- AUC: %1.2f +- %1.2f" % ( category, np.mean(classifiers_data[classifier_name]['score'][category]), np.std(classifiers_data[classifier_name]['score'][category])) ) # Adding the average performance per estimator scores = classifiers_data[classifier_name]['score'] scores['AVERAGE'] = np.mean(list(scores.values()), axis=0) classifiers_data[classifier_name]['score'] = scores .. rst-class:: sphx-glr-script-out Out: .. code-block:: none ______________________________________________________________________ logistic_l1: 12.69s scissors vs all -- AUC: 0.92 +- 0.05 face vs all -- AUC: 0.98 +- 0.02 cat vs all -- AUC: 0.96 +- 0.04 shoe vs all -- AUC: 0.92 +- 0.08 house vs all -- AUC: 1.00 +- 0.00 scrambledpix vs all -- AUC: 0.99 +- 0.01 bottle vs all -- AUC: 0.90 +- 0.08 chair vs all -- AUC: 0.91 +- 0.06 ______________________________________________________________________ logistic_l2: 50.69s scissors vs all -- AUC: 0.91 +- 0.08 face vs all -- AUC: 0.97 +- 0.04 cat vs all -- AUC: 0.97 +- 0.03 shoe vs all -- AUC: 0.92 +- 0.09 house vs all -- AUC: 1.00 +- 0.00 scrambledpix vs all -- AUC: 0.96 +- 0.11 bottle vs all -- AUC: 0.82 +- 0.18 chair vs all -- AUC: 0.89 +- 0.18 ______________________________________________________________________ ridge_classifier: 25.69s scissors vs all -- AUC: 0.91 +- 0.08 face vs all -- AUC: 0.96 +- 0.03 cat vs all -- AUC: 0.91 +- 0.07 shoe vs all -- AUC: 0.91 +- 0.07 house vs all -- AUC: 1.00 +- 0.00 scrambledpix vs all -- AUC: 0.99 +- 0.01 bottle vs all -- AUC: 0.85 +- 0.10 chair vs all -- AUC: 0.91 +- 0.06 ______________________________________________________________________ svc_l1: 27.25s scissors vs all -- AUC: 0.92 +- 0.05 face vs all -- AUC: 0.98 +- 0.03 cat vs all -- AUC: 0.96 +- 0.04 shoe vs all -- AUC: 0.92 +- 0.07 house vs all -- AUC: 1.00 +- 0.00 scrambledpix vs all -- AUC: 0.99 +- 0.01 bottle vs all -- AUC: 0.89 +- 0.08 chair vs all -- AUC: 0.93 +- 0.04 ______________________________________________________________________ svc_l2: 62.57s scissors vs all -- AUC: 0.90 +- 0.09 face vs all -- AUC: 0.96 +- 0.05 cat vs all -- AUC: 0.96 +- 0.04 shoe vs all -- AUC: 0.91 +- 0.08 house vs all -- AUC: 1.00 +- 0.00 scrambledpix vs all -- AUC: 0.96 +- 0.10 bottle vs all -- AUC: 0.82 +- 0.17 chair vs all -- AUC: 0.87 +- 0.16 Visualization -------------- .. code-block:: default # Then we make a rudimentary diagram import matplotlib.pyplot as plt plt.figure(figsize=(6, 6)) all_categories = np.sort(np.hstack([categories, 'AVERAGE'])) tick_position = np.arange(len(all_categories)) plt.yticks(tick_position + 0.25, all_categories) height = 0.1 for i, (color, classifier_name) in enumerate(zip(['b', 'm', 'k', 'r', 'g'], classifiers)): score_means = [ np.mean(classifiers_data[classifier_name]['score'][category]) for category in all_categories ] plt.barh(tick_position, score_means, label=classifier_name.replace('_', ' '), height=height, color=color) tick_position = tick_position + height plt.xlabel('Classification accuracy (AUC score)') plt.ylabel('Visual stimuli category') plt.xlim(xmin=0.5) plt.legend(loc='lower left', ncol=1) plt.title( 'Category-specific classification accuracy for different classifiers') plt.tight_layout() # We can see that for a fixed penalty the results are similar between the svc # and the logistic regression. The main difference relies on the penalty # ($\ell_1$ and $\ell_2$). The sparse penalty works better because we are in # an intra-subject setting. .. image:: /auto_examples/02_decoding/images/sphx_glr_plot_haxby_different_estimators_001.png :alt: Category-specific classification accuracy for different classifiers :class: sphx-glr-single-img Visualizing the face vs house map --------------------------------- .. code-block:: default # Finally, we plot the face vs house map for the different classifiers # Use the average EPI as a background from nilearn.image import mean_img mean_epi_img = mean_img(func_filename) # Restrict the decoding to face vs house condition_mask = np.logical_or(stimuli == b'face', stimuli == b'house') stimuli = stimuli[condition_mask] fmri_niimgs_condition = index_img(func_filename, condition_mask) from nilearn.plotting import plot_stat_map, show for classifier_name in sorted(classifiers): coef_img = classifiers_data[classifier_name]['map'] threshold = np.max(np.abs(get_data(coef_img))) * 1e-3 plot_stat_map( coef_img, bg_img=mean_epi_img, display_mode='z', cut_coords=[-15], threshold=threshold, title='%s: face vs house' % classifier_name.replace('_', ' ')) show() .. rst-class:: sphx-glr-horizontal * .. image:: /auto_examples/02_decoding/images/sphx_glr_plot_haxby_different_estimators_002.png :alt: plot haxby different estimators :class: sphx-glr-multi-img * .. image:: /auto_examples/02_decoding/images/sphx_glr_plot_haxby_different_estimators_003.png :alt: plot haxby different estimators :class: sphx-glr-multi-img * .. image:: /auto_examples/02_decoding/images/sphx_glr_plot_haxby_different_estimators_004.png :alt: plot haxby different estimators :class: sphx-glr-multi-img * .. image:: /auto_examples/02_decoding/images/sphx_glr_plot_haxby_different_estimators_005.png :alt: plot haxby different estimators :class: sphx-glr-multi-img * .. image:: /auto_examples/02_decoding/images/sphx_glr_plot_haxby_different_estimators_006.png :alt: plot haxby different estimators :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/varoquau/dev/nilearn/nilearn/plotting/displays.py:1608: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance. ax = fh.add_axes([fraction * index * (x1 - x0) + x0, y0, .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 3 minutes 13.594 seconds) .. _sphx_glr_download_auto_examples_02_decoding_plot_haxby_different_estimators.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/02_decoding/plot_haxby_different_estimators.ipynb :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_haxby_different_estimators.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_haxby_different_estimators.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_