.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_01_plotting_plot_visualize_megatrawls_netmats.py: Visualizing Megatrawls Network Matrices from Human Connectome Project ===================================================================== This example shows how to fetch network matrices data from HCP beta-release of the Functional Connectivity Megatrawl project. See :func:`nilearn.datasets.fetch_megatrawls_netmats` documentation for more details. Fetching the Megatrawls Network matrices ---------------------------------------- Fetching the partial correlation matrices of dimensionality d=300 with timeseries method 'eigen regression' .. code-block:: default from nilearn import datasets netmats = datasets.fetch_megatrawls_netmats(dimensionality=300, timeseries='eigen_regression', matrices='partial_correlation') # Partial correlation matrices array of size (300, 300) are stored in the name # of 'correlation_matrices' partial_correlation = netmats.correlation_matrices .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Dataset created in /home/varoquau/nilearn_data/Megatrawls Downloading data from http://www.nitrc.org/frs/download.php/8037/Megatrawls.tgz ... Downloaded 114688 of 3066300 bytes (3.7%, 31.3s remaining) Downloaded 344064 of 3066300 bytes (11.2%, 19.3s remaining) Downloaded 737280 of 3066300 bytes (24.0%, 11.6s remaining) Downloaded 1302528 of 3066300 bytes (42.5%, 6.6s remaining) Downloaded 2048000 of 3066300 bytes (66.8%, 3.0s remaining) Downloaded 2973696 of 3066300 bytes (97.0%, 0.2s remaining) ...done. (11 seconds, 0 min) Extracting data from /home/varoquau/nilearn_data/Megatrawls/68c41934c6cf43be91dd107f913ffd01/Megatrawls.tgz..... done. Visualization ------------- Import nilearn plotting modules to use its utilities for plotting correlation matrices .. code-block:: default from nilearn import plotting title = "Partial correlation matrices\n for d=300" display = plotting.plot_matrix(partial_correlation, colorbar=True, title=title) plotting.show() .. image:: /auto_examples/01_plotting/images/sphx_glr_plot_visualize_megatrawls_netmats_001.png :alt: plot visualize megatrawls netmats :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 11.470 seconds) .. _sphx_glr_download_auto_examples_01_plotting_plot_visualize_megatrawls_netmats.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/01_plotting/plot_visualize_megatrawls_netmats.ipynb :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_visualize_megatrawls_netmats.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_visualize_megatrawls_netmats.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_