.. only:: html
.. note::
:class: sphx-glr-download-link-note
Click :ref:`here ` to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_01_plotting_plot_visualize_megatrawls_netmats.py:
Visualizing Megatrawls Network Matrices from Human Connectome Project
=====================================================================
This example shows how to fetch network matrices data from HCP beta-release
of the Functional Connectivity Megatrawl project.
See :func:`nilearn.datasets.fetch_megatrawls_netmats` documentation for more details.
Fetching the Megatrawls Network matrices
----------------------------------------
Fetching the partial correlation matrices of dimensionality d=300 with
timeseries method 'eigen regression'
.. code-block:: default
from nilearn import datasets
netmats = datasets.fetch_megatrawls_netmats(dimensionality=300,
timeseries='eigen_regression',
matrices='partial_correlation')
# Partial correlation matrices array of size (300, 300) are stored in the name
# of 'correlation_matrices'
partial_correlation = netmats.correlation_matrices
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Dataset created in /home/varoquau/nilearn_data/Megatrawls
Downloading data from http://www.nitrc.org/frs/download.php/8037/Megatrawls.tgz ...
Downloaded 114688 of 3066300 bytes (3.7%, 31.3s remaining)
Downloaded 344064 of 3066300 bytes (11.2%, 19.3s remaining)
Downloaded 737280 of 3066300 bytes (24.0%, 11.6s remaining)
Downloaded 1302528 of 3066300 bytes (42.5%, 6.6s remaining)
Downloaded 2048000 of 3066300 bytes (66.8%, 3.0s remaining)
Downloaded 2973696 of 3066300 bytes (97.0%, 0.2s remaining) ...done. (11 seconds, 0 min)
Extracting data from /home/varoquau/nilearn_data/Megatrawls/68c41934c6cf43be91dd107f913ffd01/Megatrawls.tgz..... done.
Visualization
-------------
Import nilearn plotting modules to use its utilities for plotting
correlation matrices
.. code-block:: default
from nilearn import plotting
title = "Partial correlation matrices\n for d=300"
display = plotting.plot_matrix(partial_correlation, colorbar=True,
title=title)
plotting.show()
.. image:: /auto_examples/01_plotting/images/sphx_glr_plot_visualize_megatrawls_netmats_001.png
:alt: plot visualize megatrawls netmats
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 11.470 seconds)
.. _sphx_glr_download_auto_examples_01_plotting_plot_visualize_megatrawls_netmats.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: binder-badge
.. image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/01_plotting/plot_visualize_megatrawls_netmats.ipynb
:width: 150 px
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: plot_visualize_megatrawls_netmats.py `
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: plot_visualize_megatrawls_netmats.ipynb `
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery `_