.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_01_plotting_plot_visualization.py: NeuroImaging volumes visualization ================================== Simple example to show Nifti data visualization. Fetch data ---------- .. code-block:: default from nilearn import datasets # By default 2nd subject will be fetched haxby_dataset = datasets.fetch_haxby() # print basic information on the dataset print('First anatomical nifti image (3D) located is at: %s' % haxby_dataset.anat[0]) print('First functional nifti image (4D) is located at: %s' % haxby_dataset.func[0]) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none First anatomical nifti image (3D) located is at: /home/varoquau/nilearn_data/haxby2001/subj2/anat.nii.gz First functional nifti image (4D) is located at: /home/varoquau/nilearn_data/haxby2001/subj2/bold.nii.gz Visualization ------------- .. code-block:: default from nilearn.image.image import mean_img # Compute the mean EPI: we do the mean along the axis 3, which is time func_filename = haxby_dataset.func[0] mean_haxby = mean_img(func_filename) from nilearn.plotting import plot_epi, show plot_epi(mean_haxby) .. image:: /auto_examples/01_plotting/images/sphx_glr_plot_visualization_001.png :alt: plot visualization :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Extracting a brain mask ----------------------- Simple computation of a mask from the fMRI data .. code-block:: default from nilearn.masking import compute_epi_mask mask_img = compute_epi_mask(func_filename) # Visualize it as an ROI from nilearn.plotting import plot_roi plot_roi(mask_img, mean_haxby) .. image:: /auto_examples/01_plotting/images/sphx_glr_plot_visualization_002.png :alt: plot visualization :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Applying the mask to extract the corresponding time series ---------------------------------------------------------- .. code-block:: default from nilearn.masking import apply_mask masked_data = apply_mask(func_filename, mask_img) # masked_data shape is (timepoints, voxels). We can plot the first 150 # timepoints from two voxels # And now plot a few of these import matplotlib.pyplot as plt plt.figure(figsize=(7, 5)) plt.plot(masked_data[:150, :2]) plt.xlabel('Time [TRs]', fontsize=16) plt.ylabel('Intensity', fontsize=16) plt.xlim(0, 150) plt.subplots_adjust(bottom=.12, top=.95, right=.95, left=.12) show() .. image:: /auto_examples/01_plotting/images/sphx_glr_plot_visualization_003.png :alt: plot visualization :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 23.863 seconds) .. _sphx_glr_download_auto_examples_01_plotting_plot_visualization.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/01_plotting/plot_visualization.ipynb :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_visualization.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_visualization.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_