.. only:: html
.. note::
:class: sphx-glr-download-link-note
Click :ref:`here ` to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_01_plotting_plot_visualization.py:
NeuroImaging volumes visualization
==================================
Simple example to show Nifti data visualization.
Fetch data
----------
.. code-block:: default
from nilearn import datasets
# By default 2nd subject will be fetched
haxby_dataset = datasets.fetch_haxby()
# print basic information on the dataset
print('First anatomical nifti image (3D) located is at: %s' %
haxby_dataset.anat[0])
print('First functional nifti image (4D) is located at: %s' %
haxby_dataset.func[0])
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
First anatomical nifti image (3D) located is at: /home/varoquau/nilearn_data/haxby2001/subj2/anat.nii.gz
First functional nifti image (4D) is located at: /home/varoquau/nilearn_data/haxby2001/subj2/bold.nii.gz
Visualization
-------------
.. code-block:: default
from nilearn.image.image import mean_img
# Compute the mean EPI: we do the mean along the axis 3, which is time
func_filename = haxby_dataset.func[0]
mean_haxby = mean_img(func_filename)
from nilearn.plotting import plot_epi, show
plot_epi(mean_haxby)
.. image:: /auto_examples/01_plotting/images/sphx_glr_plot_visualization_001.png
:alt: plot visualization
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Extracting a brain mask
-----------------------
Simple computation of a mask from the fMRI data
.. code-block:: default
from nilearn.masking import compute_epi_mask
mask_img = compute_epi_mask(func_filename)
# Visualize it as an ROI
from nilearn.plotting import plot_roi
plot_roi(mask_img, mean_haxby)
.. image:: /auto_examples/01_plotting/images/sphx_glr_plot_visualization_002.png
:alt: plot visualization
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Applying the mask to extract the corresponding time series
----------------------------------------------------------
.. code-block:: default
from nilearn.masking import apply_mask
masked_data = apply_mask(func_filename, mask_img)
# masked_data shape is (timepoints, voxels). We can plot the first 150
# timepoints from two voxels
# And now plot a few of these
import matplotlib.pyplot as plt
plt.figure(figsize=(7, 5))
plt.plot(masked_data[:150, :2])
plt.xlabel('Time [TRs]', fontsize=16)
plt.ylabel('Intensity', fontsize=16)
plt.xlim(0, 150)
plt.subplots_adjust(bottom=.12, top=.95, right=.95, left=.12)
show()
.. image:: /auto_examples/01_plotting/images/sphx_glr_plot_visualization_003.png
:alt: plot visualization
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 23.863 seconds)
.. _sphx_glr_download_auto_examples_01_plotting_plot_visualization.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: binder-badge
.. image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/01_plotting/plot_visualization.ipynb
:width: 150 px
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: plot_visualization.py `
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: plot_visualization.ipynb `
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery `_