.. only:: html
.. note::
:class: sphx-glr-download-link-note
Click :ref:`here ` to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_01_plotting_plot_surf_atlas.py:
Loading and plotting of a cortical surface atlas
=================================================
The Destrieux parcellation (Destrieux et al, 2010) in fsaverage5 space as
distributed with Freesurfer is used as the chosen atlas.
The :func:`nilearn.plotting.plot_surf_roi` function is used
to plot the parcellation on the pial surface.
See :ref:`plotting` for more details.
References
----------
Destrieux et al, (2010). Automatic parcellation of human cortical gyri and
sulci using standard anatomical nomenclature. NeuroImage, 53, 1.
URL http://dx.doi.org/10.1016/j.neuroimage.2010.06.010.
Data fetcher
------------
.. code-block:: default
# Retrieve destrieux parcellation in fsaverage5 space from nilearn
from nilearn import datasets
destrieux_atlas = datasets.fetch_atlas_surf_destrieux()
# The parcellation is already loaded into memory
parcellation = destrieux_atlas['map_left']
# Retrieve fsaverage5 surface dataset for the plotting background. It contains
# the surface template as pial and inflated version and a sulcal depth maps
# which is used for shading
fsaverage = datasets.fetch_surf_fsaverage()
# The fsaverage dataset contains file names pointing to the file locations
print('Fsaverage5 pial surface of left hemisphere is at: %s' %
fsaverage['pial_left'])
print('Fsaverage5 inflated surface of left hemisphere is at: %s' %
fsaverage['infl_left'])
print('Fsaverage5 sulcal depth map of left hemisphere is at: %s' %
fsaverage['sulc_left'])
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Fsaverage5 pial surface of left hemisphere is at: /home/varoquau/dev/nilearn/nilearn/datasets/data/fsaverage5/pial.left.gii.gz
Fsaverage5 inflated surface of left hemisphere is at: /home/varoquau/dev/nilearn/nilearn/datasets/data/fsaverage5/pial_inflated.left.gii.gz
Fsaverage5 sulcal depth map of left hemisphere is at: /home/varoquau/dev/nilearn/nilearn/datasets/data/fsaverage5/sulc.left.gii.gz
Visualization
-------------
.. code-block:: default
# Display Destrieux parcellation on fsaverage5 pial surface using nilearn
from nilearn import plotting
plotting.plot_surf_roi(fsaverage['pial_left'], roi_map=parcellation,
hemi='left', view='lateral',
bg_map=fsaverage['sulc_left'], bg_on_data=True,
darkness=.5)
.. image:: /auto_examples/01_plotting/images/sphx_glr_plot_surf_atlas_001.png
:alt: plot surf atlas
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Display Destrieux parcellation on inflated fsaverage5 surface
.. code-block:: default
plotting.plot_surf_roi(fsaverage['infl_left'], roi_map=parcellation,
hemi='left', view='lateral',
bg_map=fsaverage['sulc_left'], bg_on_data=True,
darkness=.5)
.. image:: /auto_examples/01_plotting/images/sphx_glr_plot_surf_atlas_002.png
:alt: plot surf atlas
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Display Destrieux parcellation with different views: posterior
.. code-block:: default
plotting.plot_surf_roi(fsaverage['infl_left'], roi_map=parcellation,
hemi='left', view='posterior',
bg_map=fsaverage['sulc_left'], bg_on_data=True,
darkness=.5)
.. image:: /auto_examples/01_plotting/images/sphx_glr_plot_surf_atlas_003.png
:alt: plot surf atlas
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Display Destrieux parcellation with different views: ventral
.. code-block:: default
plotting.plot_surf_roi(fsaverage['infl_left'], roi_map=parcellation,
hemi='left', view='ventral',
bg_map=fsaverage['sulc_left'], bg_on_data=True,
darkness=.5)
plotting.show()
.. image:: /auto_examples/01_plotting/images/sphx_glr_plot_surf_atlas_004.png
:alt: plot surf atlas
:class: sphx-glr-single-img
Display connectome from surface parcellation
The following code extracts 3D coordinates of surface parcels (a.k.a. labels
in the Freesurfer naming convention). To do so we load the pial surface
of fsaverage subject, get the vertices contained in each parcel and compute
the mean location to obtain the coordinates.
.. code-block:: default
import numpy as np
from nilearn import surface
atlas = destrieux_atlas
coordinates = []
labels = destrieux_atlas['labels']
for hemi in ['left', 'right']:
vert = destrieux_atlas['map_%s' % hemi]
rr, _ = surface.load_surf_mesh(fsaverage['pial_%s' % hemi])
for k, label in enumerate(labels):
if "Unknown" not in str(label): # Omit the Unknown label.
# Compute mean location of vertices in label of index k
coordinates.append(np.mean(rr[vert == k], axis=0))
coordinates = np.array(coordinates) # 3D coordinates of parcels
# We now make a synthetic connectivity matrix that connects labels
# between left and right hemispheres.
n_parcels = len(coordinates)
corr = np.zeros((n_parcels, n_parcels))
n_parcels_hemi = n_parcels // 2
corr[np.arange(n_parcels_hemi), np.arange(n_parcels_hemi) + n_parcels_hemi] = 1
corr = corr + corr.T
plotting.plot_connectome(corr, coordinates,
edge_threshold="90%",
title='fsaverage Destrieux atlas')
plotting.show()
.. image:: /auto_examples/01_plotting/images/sphx_glr_plot_surf_atlas_005.png
:alt: plot surf atlas
:class: sphx-glr-single-img
3D visualization in a web browser
---------------------------------
An alternative to :func:`nilearn.plotting.plot_surf_roi` is to use
:func:`nilearn.plotting.view_surf` for more interactive
visualizations in a web browser. See :ref:`interactive-surface-plotting` for
more details.
.. code-block:: default
view = plotting.view_surf(fsaverage.infl_left, parcellation,
cmap='gist_ncar', symmetric_cmap=False)
# In a Jupyter notebook, if ``view`` is the output of a cell, it will
# be displayed below the cell
view
.. only:: builder_html
.. raw:: html
.. code-block:: default
# uncomment this to open the plot in a web browser:
# view.open_in_browser()
you can also use :func:`nilearn.plotting.view_connectome` to open an
interactive view of the connectome.
.. code-block:: default
view = plotting.view_connectome(corr, coordinates, edge_threshold='90%')
# uncomment this to open the plot in a web browser:
# view.open_in_browser()
view
.. only:: builder_html
.. raw:: html
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 3.923 seconds)
.. _sphx_glr_download_auto_examples_01_plotting_plot_surf_atlas.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: binder-badge
.. image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/01_plotting/plot_surf_atlas.ipynb
:width: 150 px
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: plot_surf_atlas.py `
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: plot_surf_atlas.ipynb `
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery `_