.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_01_plotting_plot_surf_atlas.py: Loading and plotting of a cortical surface atlas ================================================= The Destrieux parcellation (Destrieux et al, 2010) in fsaverage5 space as distributed with Freesurfer is used as the chosen atlas. The :func:`nilearn.plotting.plot_surf_roi` function is used to plot the parcellation on the pial surface. See :ref:`plotting` for more details. References ---------- Destrieux et al, (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 53, 1. URL http://dx.doi.org/10.1016/j.neuroimage.2010.06.010. Data fetcher ------------ .. code-block:: default # Retrieve destrieux parcellation in fsaverage5 space from nilearn from nilearn import datasets destrieux_atlas = datasets.fetch_atlas_surf_destrieux() # The parcellation is already loaded into memory parcellation = destrieux_atlas['map_left'] # Retrieve fsaverage5 surface dataset for the plotting background. It contains # the surface template as pial and inflated version and a sulcal depth maps # which is used for shading fsaverage = datasets.fetch_surf_fsaverage() # The fsaverage dataset contains file names pointing to the file locations print('Fsaverage5 pial surface of left hemisphere is at: %s' % fsaverage['pial_left']) print('Fsaverage5 inflated surface of left hemisphere is at: %s' % fsaverage['infl_left']) print('Fsaverage5 sulcal depth map of left hemisphere is at: %s' % fsaverage['sulc_left']) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Fsaverage5 pial surface of left hemisphere is at: /home/varoquau/dev/nilearn/nilearn/datasets/data/fsaverage5/pial.left.gii.gz Fsaverage5 inflated surface of left hemisphere is at: /home/varoquau/dev/nilearn/nilearn/datasets/data/fsaverage5/pial_inflated.left.gii.gz Fsaverage5 sulcal depth map of left hemisphere is at: /home/varoquau/dev/nilearn/nilearn/datasets/data/fsaverage5/sulc.left.gii.gz Visualization ------------- .. code-block:: default # Display Destrieux parcellation on fsaverage5 pial surface using nilearn from nilearn import plotting plotting.plot_surf_roi(fsaverage['pial_left'], roi_map=parcellation, hemi='left', view='lateral', bg_map=fsaverage['sulc_left'], bg_on_data=True, darkness=.5) .. image:: /auto_examples/01_plotting/images/sphx_glr_plot_surf_atlas_001.png :alt: plot surf atlas :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none
Display Destrieux parcellation on inflated fsaverage5 surface .. code-block:: default plotting.plot_surf_roi(fsaverage['infl_left'], roi_map=parcellation, hemi='left', view='lateral', bg_map=fsaverage['sulc_left'], bg_on_data=True, darkness=.5) .. image:: /auto_examples/01_plotting/images/sphx_glr_plot_surf_atlas_002.png :alt: plot surf atlas :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none
Display Destrieux parcellation with different views: posterior .. code-block:: default plotting.plot_surf_roi(fsaverage['infl_left'], roi_map=parcellation, hemi='left', view='posterior', bg_map=fsaverage['sulc_left'], bg_on_data=True, darkness=.5) .. image:: /auto_examples/01_plotting/images/sphx_glr_plot_surf_atlas_003.png :alt: plot surf atlas :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none
Display Destrieux parcellation with different views: ventral .. code-block:: default plotting.plot_surf_roi(fsaverage['infl_left'], roi_map=parcellation, hemi='left', view='ventral', bg_map=fsaverage['sulc_left'], bg_on_data=True, darkness=.5) plotting.show() .. image:: /auto_examples/01_plotting/images/sphx_glr_plot_surf_atlas_004.png :alt: plot surf atlas :class: sphx-glr-single-img Display connectome from surface parcellation The following code extracts 3D coordinates of surface parcels (a.k.a. labels in the Freesurfer naming convention). To do so we load the pial surface of fsaverage subject, get the vertices contained in each parcel and compute the mean location to obtain the coordinates. .. code-block:: default import numpy as np from nilearn import surface atlas = destrieux_atlas coordinates = [] labels = destrieux_atlas['labels'] for hemi in ['left', 'right']: vert = destrieux_atlas['map_%s' % hemi] rr, _ = surface.load_surf_mesh(fsaverage['pial_%s' % hemi]) for k, label in enumerate(labels): if "Unknown" not in str(label): # Omit the Unknown label. # Compute mean location of vertices in label of index k coordinates.append(np.mean(rr[vert == k], axis=0)) coordinates = np.array(coordinates) # 3D coordinates of parcels # We now make a synthetic connectivity matrix that connects labels # between left and right hemispheres. n_parcels = len(coordinates) corr = np.zeros((n_parcels, n_parcels)) n_parcels_hemi = n_parcels // 2 corr[np.arange(n_parcels_hemi), np.arange(n_parcels_hemi) + n_parcels_hemi] = 1 corr = corr + corr.T plotting.plot_connectome(corr, coordinates, edge_threshold="90%", title='fsaverage Destrieux atlas') plotting.show() .. image:: /auto_examples/01_plotting/images/sphx_glr_plot_surf_atlas_005.png :alt: plot surf atlas :class: sphx-glr-single-img 3D visualization in a web browser --------------------------------- An alternative to :func:`nilearn.plotting.plot_surf_roi` is to use :func:`nilearn.plotting.view_surf` for more interactive visualizations in a web browser. See :ref:`interactive-surface-plotting` for more details. .. code-block:: default view = plotting.view_surf(fsaverage.infl_left, parcellation, cmap='gist_ncar', symmetric_cmap=False) # In a Jupyter notebook, if ``view`` is the output of a cell, it will # be displayed below the cell view .. only:: builder_html .. raw:: html

.. code-block:: default # uncomment this to open the plot in a web browser: # view.open_in_browser() you can also use :func:`nilearn.plotting.view_connectome` to open an interactive view of the connectome. .. code-block:: default view = plotting.view_connectome(corr, coordinates, edge_threshold='90%') # uncomment this to open the plot in a web browser: # view.open_in_browser() view .. only:: builder_html .. raw:: html

.. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 3.923 seconds) .. _sphx_glr_download_auto_examples_01_plotting_plot_surf_atlas.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/01_plotting/plot_surf_atlas.ipynb :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_surf_atlas.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_surf_atlas.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_