.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_01_plotting_plot_overlay.py: Visualizing a probablistic atlas: the default mode in the MSDL atlas ===================================================================== Visualizing a probablistic atlas requires visualizing the different maps that compose it. Here we represent the nodes constituting the default mode network in the `MSDL atlas `_. The tools that we need to leverage are: * :func:`nilearn.image.index_img` to retrieve the various maps composing the atlas * Adding overlays on an existing brain display, to plot each of these maps Alternatively, :func:`nilearn.plotting.plot_prob_atlas` allows to plot the maps in one step that with less control over the plot (see below) Fetching probabilistic atlas - MSDL atlas ----------------------------------------- .. code-block:: default from nilearn import datasets atlas_data = datasets.fetch_atlas_msdl() atlas_filename = atlas_data.maps .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Dataset created in /home/varoquau/nilearn_data/msdl_atlas Downloading data from https://team.inria.fr/parietal/files/2015/01/MSDL_rois.zip ... ...done. (0 seconds, 0 min) Extracting data from /home/varoquau/nilearn_data/msdl_atlas/8eaecb9e05c478f565847000d9902a25/MSDL_rois.zip..... done. /usr/lib/python3/dist-packages/numpy/lib/npyio.py:2358: VisibleDeprecationWarning: Reading unicode strings without specifying the encoding argument is deprecated. Set the encoding, use None for the system default. output = genfromtxt(fname, **kwargs) Visualizing a probabilistic atlas with plot_stat_map and add_overlay object --------------------------------------------------------------------------- .. code-block:: default from nilearn import plotting, image # First plot the map for the PCC: index 4 in the atlas display = plotting.plot_stat_map(image.index_img(atlas_filename, 4), colorbar=False, title="DMN nodes in MSDL atlas") # Now add as an overlay the maps for the ACC and the left and right # parietal nodes display.add_overlay(image.index_img(atlas_filename, 5), cmap=plotting.cm.black_blue) display.add_overlay(image.index_img(atlas_filename, 6), cmap=plotting.cm.black_green) display.add_overlay(image.index_img(atlas_filename, 3), cmap=plotting.cm.black_pink) plotting.show() .. image:: /auto_examples/01_plotting/images/sphx_glr_plot_overlay_001.png :alt: plot overlay :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /usr/lib/python3/dist-packages/numpy/ma/core.py:2785: UserWarning: Warning: converting a masked element to nan. _data = np.array(data, dtype=dtype, copy=copy, Visualizing a probablistic atlas with plot_prob_atlas ===================================================== Alternatively, we can create a new 4D-image by selecting the 3rd, 4th, 5th and 6th (zero-based) probabilistic map from atlas via :func:`nilearn.image.index_img` and use :func:`nilearn.plotting.plot_prob_atlas` (added in version 0.2) to plot the selected nodes in one step. Unlike :func:`nilearn.plotting.plot_stat_map` this works with 4D images .. code-block:: default dmn_nodes = image.index_img(atlas_filename, [3, 4, 5, 6]) # Note that dmn_node is now a 4D image print(dmn_nodes.shape) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none (40, 48, 35, 4) .. code-block:: default display = plotting.plot_prob_atlas(dmn_nodes, cut_coords=(0, -55, 29), title="DMN nodes in MSDL atlas") plotting.show() .. image:: /auto_examples/01_plotting/images/sphx_glr_plot_overlay_002.png :alt: plot overlay :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 2.943 seconds) .. _sphx_glr_download_auto_examples_01_plotting_plot_overlay.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/01_plotting/plot_overlay.ipynb :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_overlay.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_overlay.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_