.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_01_plotting_plot_haxby_masks.py: Plot Haxby masks ================= Small script to plot the masks of the Haxby dataset. .. image:: /auto_examples/01_plotting/images/sphx_glr_plot_haxby_masks_001.png :alt: plot haxby masks :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none First subject anatomical nifti image (3D) is at: /home/varoquau/nilearn_data/haxby2001/subj2/anat.nii.gz First subject functional nifti image (4D) is at: /home/varoquau/nilearn_data/haxby2001/subj2/bold.nii.gz /home/varoquau/dev/nilearn/nilearn/plotting/displays.py:1608: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance. ax = fh.add_axes([fraction * index * (x1 - x0) + x0, y0, /home/varoquau/dev/nilearn/nilearn/plotting/displays.py:97: UserWarning: No contour levels were found within the data range. im = getattr(ax, type)(data_2d.copy(), /home/varoquau/dev/nilearn/nilearn/plotting/displays.py:97: UserWarning: The following kwargs were not used by contour: 'contours' im = getattr(ax, type)(data_2d.copy(), | .. code-block:: default import matplotlib.pyplot as plt from nilearn import datasets haxby_dataset = datasets.fetch_haxby() # print basic information on the dataset print('First subject anatomical nifti image (3D) is at: %s' % haxby_dataset.anat[0]) print('First subject functional nifti image (4D) is at: %s' % haxby_dataset.func[0]) # 4D data # Build the mean image because we have no anatomic data from nilearn import image func_filename = haxby_dataset.func[0] mean_img = image.mean_img(func_filename) z_slice = -14 fig = plt.figure(figsize=(4, 5.4), facecolor='k') from nilearn.plotting import plot_anat, show display = plot_anat(mean_img, display_mode='z', cut_coords=[z_slice], figure=fig) mask_vt_filename = haxby_dataset.mask_vt[0] mask_house_filename = haxby_dataset.mask_house[0] mask_face_filename = haxby_dataset.mask_face[0] display.add_contours(mask_vt_filename, contours=1, antialiased=False, linewidths=4., levels=[0], colors=['red']) display.add_contours(mask_house_filename, contours=1, antialiased=False, linewidths=4., levels=[0], colors=['blue']) display.add_contours(mask_face_filename, contours=1, antialiased=False, linewidths=4., levels=[0], colors=['limegreen']) # We generate a legend using the trick described on # http://matplotlib.sourceforge.net/users/legend_guide.httpml#using-proxy-artist from matplotlib.patches import Rectangle p_v = Rectangle((0, 0), 1, 1, fc="red") p_h = Rectangle((0, 0), 1, 1, fc="blue") p_f = Rectangle((0, 0), 1, 1, fc="limegreen") plt.legend([p_v, p_h, p_f], ["vt", "house", "face"]) show() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 4.804 seconds) .. _sphx_glr_download_auto_examples_01_plotting_plot_haxby_masks.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/01_plotting/plot_haxby_masks.ipynb :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_haxby_masks.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_haxby_masks.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_