.. only:: html
.. note::
:class: sphx-glr-download-link-note
Click :ref:`here ` to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_01_plotting_plot_demo_more_plotting.py:
More plotting tools from nilearn
================================
In this example, we demonstrate how to use plotting options from
nilearn essential in visualizing brain image analysis results.
We emphasize the use of parameters such as `display_mode` and `cut_coords`
with plotting function :func:`nilearn.plotting.plot_stat_map`. Also,
we show how to use various features such as `add_edges`, `add_contours`,
`add_markers` essential in visualizing regions of interest images or
mask images overlaying on subject specific anatomical/EPI image.
The display features shown here are inherited from the
:class:`nilearn.plotting.displays.OrthoSlicer` class.
The parameter `display_mode` is used to draw brain slices along given
specific directions, where directions can be one of 'ortho',
'tiled','x', 'y', 'z', 'yx', 'xz', 'yz'. whereas parameter `cut_coords`
is used to specify a limited number of slices to visualize along given
specific slice direction. The parameter `cut_coords` can also be used
to draw the specific cuts in the slices by giving its particular
coordinates in MNI space accordingly with particular slice direction.
This helps us point to the activation specific location of the brain slices.
See :ref:`plotting` for more details.
First, we retrieve data from nilearn provided (general-purpose) datasets
-------------------------------------------------------------------------
.. code-block:: default
from nilearn import datasets
# haxby dataset to have anatomical image, EPI images and masks
haxby_dataset = datasets.fetch_haxby()
haxby_anat_filename = haxby_dataset.anat[0]
haxby_mask_filename = haxby_dataset.mask_vt[0]
haxby_func_filename = haxby_dataset.func[0]
# localizer dataset to have contrast maps
motor_images = datasets.fetch_neurovault_motor_task()
stat_img = motor_images.images[0]
Now, we show from here how to visualize the retrieved datasets using plotting
tools from nilearn.
.. code-block:: default
from nilearn import plotting
Visualizing in - 'sagittal', 'coronal' and 'axial' with given coordinates
-------------------------------------------------------------------------
The first argument is a path to the filename of a constrast map,
optional argument `display_mode` is given as string 'ortho' to visualize
the map in three specific directions xyz and the optional `cut_coords`
argument, is here a list of integers denotes coordinates of each slice
in the order [x, y, z]. By default the `colorbar` argument is set to True
in plot_stat_map.
.. code-block:: default
plotting.plot_stat_map(stat_img, display_mode='ortho',
cut_coords=[36, -27, 60],
title="display_mode='ortho', cut_coords=[36, -27, 60]")
.. image:: /auto_examples/01_plotting/images/sphx_glr_plot_demo_more_plotting_001.png
:alt: plot demo more plotting
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Visualizing in - single view 'axial' with number of cuts=5
-----------------------------------------------------------
In this type of visualization, the `display_mode` argument is given as
string 'z' for axial direction and `cut_coords` as integer 5 without a
list implies that number of cuts in the slices should be maximum of 5.
The coordinates to cut the slices are selected automatically
.. code-block:: default
plotting.plot_stat_map(stat_img, display_mode='z', cut_coords=5,
title="display_mode='z', cut_coords=5")
.. image:: /auto_examples/01_plotting/images/sphx_glr_plot_demo_more_plotting_002.png
:alt: plot demo more plotting
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Visualizing in - single view 'sagittal' with only two slices
-------------------------------------------------------------
In this type, `display_mode` should be given as string 'x' for sagittal
view and coordinates should be given as integers in a list
.. code-block:: default
plotting.plot_stat_map(stat_img, display_mode='x',
cut_coords=[-36, 36],
title="display_mode='x', cut_coords=[-36, 36]")
.. image:: /auto_examples/01_plotting/images/sphx_glr_plot_demo_more_plotting_003.png
:alt: plot demo more plotting
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Visualizing in - 'coronal' view with single cut
------------------------------------------------
For coronal view, `display_mode` is given as string 'y' and `cut_coords`
as integer 1 not as a list for single cut. The coordinates are selected
automatically
.. code-block:: default
plotting.plot_stat_map(stat_img, display_mode='y', cut_coords=1,
title="display_mode='y', cut_coords=1")
.. image:: /auto_examples/01_plotting/images/sphx_glr_plot_demo_more_plotting_004.png
:alt: plot demo more plotting
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
/home/varoquau/dev/nilearn/nilearn/plotting/displays.py:1608: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance.
ax = fh.add_axes([fraction * index * (x1 - x0) + x0, y0,
Visualizing without a colorbar on the right side
-------------------------------------------------
The argument `colorbar` should be given as False to show plots without
a colorbar on the right side.
.. code-block:: default
plotting.plot_stat_map(stat_img, display_mode='z',
cut_coords=1, colorbar=False,
title="display_mode='z', cut_coords=1, colorbar=False")
.. image:: /auto_examples/01_plotting/images/sphx_glr_plot_demo_more_plotting_005.png
:alt: plot demo more plotting
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Visualize in - two views 'sagittal' and 'axial' with given coordinates
-------------------------------------------------------------------------
argument display_mode='xz' where 'x' for sagittal and 'z' for axial view.
argument `cut_coords` should match with input number of views therefore two
integers should be given in a list to select the slices to be displayed
.. code-block:: default
plotting.plot_stat_map(stat_img, display_mode='xz',
cut_coords=[36, 60],
title="display_mode='xz', cut_coords=[36, 60]")
.. image:: /auto_examples/01_plotting/images/sphx_glr_plot_demo_more_plotting_006.png
:alt: plot demo more plotting
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Changing the views to 'coronal', 'sagittal' views with coordinates
-------------------------------------------------------------------
display_mode='yx' for coronal and sagittal view and coordinates will be
assigned in the order of direction as [x, y, z]
.. code-block:: default
plotting.plot_stat_map(stat_img, display_mode='yx',
cut_coords=[-27, 36],
title="display_mode='yx', cut_coords=[-27, 36]")
.. image:: /auto_examples/01_plotting/images/sphx_glr_plot_demo_more_plotting_007.png
:alt: plot demo more plotting
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Now, views are changed to 'coronal' and 'axial' views with coordinates
-----------------------------------------------------------------------
.. code-block:: default
plotting.plot_stat_map(stat_img, display_mode='yz',
cut_coords=[-27, 60],
title="display_mode='yz', cut_coords=[-27, 60]")
.. image:: /auto_examples/01_plotting/images/sphx_glr_plot_demo_more_plotting_008.png
:alt: plot demo more plotting
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Visualizing three views in 2x2 fashion
-------------------------------------------------------------------------
display_mode='tiled' for sagittal, coronal and axial view
.. code-block:: default
plotting.plot_stat_map(stat_img, display_mode='tiled',
cut_coords=[36, -27, 60],
title="display_mode='tiled'")
.. image:: /auto_examples/01_plotting/images/sphx_glr_plot_demo_more_plotting_009.png
:alt: plot demo more plotting
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Demonstrating various display features
---------------------------------------
In second part, we switch to demonstrating various features add_* from
nilearn where each specific feature will be helpful in projecting brain
imaging results for further interpretation.
.. code-block:: default
# Import image processing tool for basic processing of functional brain image
from nilearn import image
# Compute voxel-wise mean functional image across time dimension. Now we have
# functional image in 3D assigned in mean_haxby_img
mean_haxby_img = image.mean_img(haxby_func_filename)
Showing how to use `add_edges`
------------------------------
Now let us see how to use `add_edges`, method useful for checking
coregistration by overlaying anatomical image as edges (red) on top of
mean functional image (background), both being of same subject.
.. code-block:: default
# First, we call the `plot_anat` plotting function, with a background image
# as first argument, in this case the mean fMRI image.
display = plotting.plot_anat(mean_haxby_img, title="add_edges")
# We are now able to use add_edges method inherited in plotting object named as
# display. First argument - anatomical image and by default edges will be
# displayed as red 'r', to choose different colors green 'g' and blue 'b'.
display.add_edges(haxby_anat_filename)
.. image:: /auto_examples/01_plotting/images/sphx_glr_plot_demo_more_plotting_010.png
:alt: plot demo more plotting
:class: sphx-glr-single-img
How to use `add_contours`
-------------------------
Plotting outline of the mask (red) on top of the mean EPI image with
`add_contours`. This method is useful for region specific interpretation
of brain images
.. code-block:: default
# As seen before, we call the `plot_anat` function with a background image
# as first argument, in this case again the mean fMRI image and argument
# `cut_coords` as list for manual cut with coordinates pointing at masked
# brain regions
display = plotting.plot_anat(mean_haxby_img, title="add_contours",
cut_coords=[-34, -39, -9])
# Now use `add_contours` in display object with the path to a mask image from
# the Haxby dataset as first argument and argument `levels` given as list
# of values to select particular level in the contour to display and argument
# `colors` specified as red 'r' to see edges as red in color.
# See help on matplotlib.pyplot.contour to use more options with this method
display.add_contours(haxby_mask_filename, levels=[0.5], colors='r')
.. image:: /auto_examples/01_plotting/images/sphx_glr_plot_demo_more_plotting_011.png
:alt: plot demo more plotting
:class: sphx-glr-single-img
Plotting outline of the mask (blue) with color fillings using same method
`add_contours`.
.. code-block:: default
display = plotting.plot_anat(mean_haxby_img,
title="add_contours with filled=True",
cut_coords=[-34, -39, -9])
# By default, no color fillings will be shown using `add_contours`. To see
# contours with color fillings use argument filled=True. contour colors are
# changed to blue 'b' with alpha=0.7 sets the transparency of color fillings.
# See help on matplotlib.pyplot.contourf to use more options given that filled
# should be True
display.add_contours(haxby_mask_filename, filled=True, alpha=0.7,
levels=[0.5], colors='b')
.. image:: /auto_examples/01_plotting/images/sphx_glr_plot_demo_more_plotting_012.png
:alt: plot demo more plotting
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
/home/varoquau/dev/nilearn/nilearn/plotting/displays.py:97: UserWarning: No contour levels were found within the data range.
im = getattr(ax, type)(data_2d.copy(),
Plotting seeds using `add_markers`
----------------------------------
Plotting seed regions of interest as spheres using new feature `add_markers`
with MNI coordinates of interest.
.. code-block:: default
display = plotting.plot_anat(mean_haxby_img, title="add_markers",
cut_coords=[-34, -39, -9])
# Coordinates of seed regions should be specified in first argument and second
# argument `marker_color` denotes color of the sphere in this case yellow 'y'
# and third argument `marker_size` denotes size of the sphere
coords = [(-34, -39, -9)]
display.add_markers(coords, marker_color='y', marker_size=100)
.. image:: /auto_examples/01_plotting/images/sphx_glr_plot_demo_more_plotting_013.png
:alt: plot demo more plotting
:class: sphx-glr-single-img
Annotating plots
------------------------------
It is possible to alter the default annotations of plots, using the
``annotate`` member function of display objects.
For example, we can add a scale bar at the bottom right of each view:
.. code-block:: default
display = plotting.plot_anat(mean_haxby_img,
title="adding a scale bar",
cut_coords=[-34, -39, -9])
display.annotate(scalebar=True)
.. image:: /auto_examples/01_plotting/images/sphx_glr_plot_demo_more_plotting_014.png
:alt: plot demo more plotting
:class: sphx-glr-single-img
Further configuration can be achieved by setting ``scale_*`` keyword args.
For instance, changing ``units`` to `mm` or a different scale bar size.
.. code-block:: default
display = plotting.plot_anat(mean_haxby_img,
title="adding a scale bar",
cut_coords=[-34, -39, -9])
display.annotate(scalebar=True, scale_size=25, scale_units='mm')
.. image:: /auto_examples/01_plotting/images/sphx_glr_plot_demo_more_plotting_015.png
:alt: plot demo more plotting
:class: sphx-glr-single-img
Saving plots to file
--------------------
Finally, saving the plots to file with two different ways
.. code-block:: default
# Contrast maps plotted with function `plot_stat_map` can be saved using an
# inbuilt parameter output_file as filename + .extension as string. Valid
# extensions are .png, .pdf, .svg
plotting.plot_stat_map(stat_img,
title='Using plot_stat_map output_file',
output_file='plot_stat_map.png')
Another way of saving plots is using 'savefig' option from display object
.. code-block:: default
display = plotting.plot_stat_map(stat_img,
title='Using display savefig')
display.savefig('plot_stat_map_from_display.png')
# In non-interactive settings make sure you close your displays
display.close()
plotting.show()
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 17.783 seconds)
.. _sphx_glr_download_auto_examples_01_plotting_plot_demo_more_plotting.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: binder-badge
.. image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/nilearn/nilearn.github.io/master?filepath=examples/auto_examples/01_plotting/plot_demo_more_plotting.ipynb
:width: 150 px
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: plot_demo_more_plotting.py `
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: plot_demo_more_plotting.ipynb `
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery `_