Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the user guide for the big picture.
nilearn.regions.ReNA#
- class nilearn.regions.ReNA(mask_img, n_clusters=2, scaling=False, n_iter=10, threshold=1e-07, memory=None, memory_level=1, verbose=0)[source]#
Recursive Neighbor Agglomeration (ReNA).
Recursively merges the pair of clusters according to 1-nearest neighbors criterion. See [1].
- Parameters:
- mask_imgNiimg-like object
Object used for masking the data.
- n_clusters
int
, optional The number of clusters to find. Default=2.
- scaling
bool
, optional If scaling is True, each cluster is scaled by the square root of its size, preserving the l2-norm of the image. Default=False.
- n_iter
int
, optional Number of iterations of the recursive neighbor agglomeration. Default=10.
- threshold
float
in the open interval (0., 1.), optional Threshold used to handle eccentricities. Default=1e-7.
- memoryinstance of
joblib.Memory
,str
, orpathlib.Path
Used to cache the masking process. By default, no caching is done. If a
str
is given, it is the path to the caching directory.- memory_level
int
, default=1 Rough estimator of the amount of memory used by caching. Higher value means more memory for caching. Zero means no caching.
- verbose
int
, default=0 Verbosity level (0 means no message).
References
- Attributes:
- `labels_ `
numpy.ndarray
, shape = [n_features] Cluster labels for each feature.
- `n_clusters_`
int
Number of clusters.
- `sizes_`
numpy.ndarray
, shape = [n_features] It contains the size of each cluster.
- `labels_ `
- __init__(mask_img, n_clusters=2, scaling=False, n_iter=10, threshold=1e-07, memory=None, memory_level=1, verbose=0)[source]#
- fit(X, y=None)[source]#
Compute clustering of the data.
- Parameters:
- X
numpy.ndarray
, shape = [n_samples, n_features] Training data.
- yIgnored
- X
- Returns:
- selfReNA object
- transform(X, y=None)[source]#
Apply clustering, reduce the dimensionality of the data.
- Parameters:
- X
numpy.ndarray
, shape = [n_samples, n_features] Data to transform with the fitted clustering.
- X
- Returns:
- X_red
numpy.ndarray
, shape = [n_samples, n_clusters] Data reduced with agglomerated signal for each cluster.
- X_red
- inverse_transform(X_red)[source]#
Send the reduced 2D data matrix back to the original feature space (voxels).
- Parameters:
- X_red
numpy.ndarray
, shape = [n_samples, n_clusters] Data reduced with agglomerated signal for each cluster.
- X_red
- Returns:
- X_inv
numpy.ndarray
, shape = [n_samples, n_features] Data reduced expanded to the original feature space.
- X_inv
- fit_predict(X, y=None)#
Perform clustering on X and returns cluster labels.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
Input data.
- yIgnored
Not used, present for API consistency by convention.
- Returns:
- labelsndarray of shape (n_samples,), dtype=np.int64
Cluster labels.
- fit_transform(X, y=None, **fit_params)#
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
Input samples.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
Target values (None for unsupervised transformations).
- **fit_paramsdict
Additional fit parameters.
- Returns:
- X_newndarray array of shape (n_samples, n_features_new)
Transformed array.
- get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- set_inverse_transform_request(*, X_red='$UNCHANGED$')#
Request metadata passed to the
inverse_transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toinverse_transform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toinverse_transform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- X_redstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
X_red
parameter ininverse_transform
.
- Returns:
- selfobject
The updated object.
- set_output(*, transform=None)#
Set output container.
See Introducing the set_output API for an example on how to use the API.
- Parameters:
- transform{“default”, “pandas”}, default=None
Configure output of transform and fit_transform.
“default”: Default output format of a transformer
“pandas”: DataFrame output
None: Transform configuration is unchanged
- Returns:
- selfestimator instance
Estimator instance.
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.