Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.
nilearn.plotting.plot_epi#
- nilearn.plotting.plot_epi(epi_img=None, cut_coords=None, output_file=None, display_mode='ortho', figure=None, axes=None, title=None, annotate=True, draw_cross=True, black_bg=True, colorbar=False, cbar_tick_format='%.2g', cmap=<matplotlib.colors.LinearSegmentedColormap object>, vmin=None, vmax=None, radiological=False, **kwargs)[source]#
Plot cuts of an EPI image.
By default 3 cuts: Frontal, Axial, and Lateral.
- Parameters:
- epi_imga nifti-image like object or a filename, optional
The EPI (T2*) image.
- cut_coordsNone, a
tuple
offloat
, orint
, optional The MNI coordinates of the point where the cut is performed.
If display_mode is ‘ortho’ or ‘tiled’, this should be a 3-tuple: (x, y, z)
For display_mode == “x”, “y”, or “z”, then these are the coordinates of each cut in the corresponding direction.
If None is given, the cuts are calculated automatically.
If display_mode is ‘mosaic’, and the number of cuts is the same for all directions, cut_coords can be specified as an integer. It can also be a length 3 tuple specifying the number of cuts for every direction if these are different.
Note
If display_mode is “x”, “y” or “z”, cut_coords can be an integer, in which case it specifies the number of cuts to perform.
- output_file
str
, or None, optional The name of an image file to export the plot to. Valid extensions are .png, .pdf, .svg. If output_file is not None, the plot is saved to a file, and the display is closed.
- display_mode{“ortho”, “tiled”, “mosaic”, “x”, “y”, “z”, “yx”, “xz”, “yz”}, default=”ortho”
Choose the direction of the cuts:
“x”: sagittal
“y”: coronal
“z”: axial
“ortho”: three cuts are performed in orthogonal directions
“tiled”: three cuts are performed and arranged in a 2x2 grid
“mosaic”: three cuts are performed along multiple rows and columns
- figure
int
, ormatplotlib.figure.Figure
, or None, optional Matplotlib figure used or its number. If None is given, a new figure is created.
- axes
matplotlib.axes.Axes
, or 4 tupleoffloat
: (xmin, ymin, width, height), default=None The axes, or the coordinates, in matplotlib figure space, of the axes used to display the plot. If None, the complete figure is used.
- title
str
, or None, default=None The title displayed on the figure.
- annotate
bool
, default=True If annotate is True, positions and left/right annotation are added to the plot.
- draw_cross
bool
, default=True If draw_cross is True, a cross is drawn on the plot to indicate the cut position.
- black_bg
bool
, or “auto”, optional If True, the background of the image is set to be black. If you wish to save figures with a black background, you will need to pass facecolor=”k”, edgecolor=”k” to
matplotlib.pyplot.savefig
. Default=True.- colorbarboolean, optional
If True, display a colorbar on the right of the plots. Default=False.
- cbar_tick_format: str, optional
Controls how to format the tick labels of the colorbar. Ex: use “%i” to display as integers. Default is ‘%.2g’ for scientific notation.
- cmap
matplotlib.colors.Colormap
, orstr
, optional The colormap to use. Either a string which is a name of a matplotlib colormap, or a matplotlib colormap object. Default=`plt.cm.nipy_spectral`.
- vmin
float
, optional Lower bound of the colormap. If None, the min of the image is used. Passed to
matplotlib.pyplot.imshow
.- vmax
float
, optional Upper bound of the colormap. If None, the max of the image is used. Passed to
matplotlib.pyplot.imshow
.- radiological
bool
, default=False Invert x axis and R L labels to plot sections as a radiological view. If False (default), the left hemisphere is on the left of a coronal image. If True, left hemisphere is on the right.
Notes
Arrays should be passed in numpy convention: (x, y, z) ordered.
Examples using nilearn.plotting.plot_epi
#
A introduction tutorial to fMRI decoding
NeuroImaging volumes visualization
Clustering methods to learn a brain parcellation from fMRI
Understanding NiftiMasker and mask computation
Computing a Region of Interest (ROI) mask manually