Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.
nilearn.glm.first_level.spm_dispersion_derivative#
- nilearn.glm.first_level.spm_dispersion_derivative(tr, oversampling=50, time_length=32.0, onset=0.0)[source]#
Implement the SPM dispersion derivative hrf model.
- Parameters:
- trfloat
Scan repeat time, in seconds.
- oversamplingint, optional
Temporal oversampling factor in seconds. Default=50.
- time_lengthfloat, optional
hrf kernel length, in seconds. Default=32.
- onsetfloat, optional
Onset of the response in seconds. Default=0.
- Returns:
- dhrfarray of shape(length / tr * oversampling), dtype=float
dhrf sampling on the oversampled time grid