Group Sparse inverse covariance for multi-subject connectome#

This example shows how to estimate a connectome on a group of subjects using the group sparse inverse covariance estimate.

Note

If you are using Nilearn with a version older than 0.9.0, then you should either upgrade your version or import maskers from the input_data module instead of the maskers module.

That is, you should manually replace in the following example all occurrences of:

from nilearn.maskers import NiftiMasker

with:

from nilearn.input_data import NiftiMasker
import numpy as np

from nilearn import plotting

n_subjects = 4  # subjects to consider for group-sparse covariance (max: 40)


def plot_matrices(cov, prec, title, labels):
    """Plot covariance and precision matrices, for a given processing."""
    prec = prec.copy()  # avoid side effects

    # Put zeros on the diagonal, for graph clarity.
    size = prec.shape[0]
    prec[list(range(size)), list(range(size))] = 0
    span = max(abs(prec.min()), abs(prec.max()))

    # Display covariance matrix
    plotting.plot_matrix(
        cov,
        cmap=plotting.cm.bwr,
        vmin=-1,
        vmax=1,
        title=f"{title} / covariance",
        labels=labels,
    )
    # Display precision matrix
    plotting.plot_matrix(
        prec,
        cmap=plotting.cm.bwr,
        vmin=-span,
        vmax=span,
        title=f"{title} / precision",
        labels=labels,
    )

Fetching datasets#

from nilearn import datasets

msdl_atlas_dataset = datasets.fetch_atlas_msdl()
rest_dataset = datasets.fetch_development_fmri(n_subjects=n_subjects)

# print basic information on the dataset
print(
    f"First subject functional nifti image (4D) is at: {rest_dataset.func[0]}"
)
First subject functional nifti image (4D) is at: /home/remi/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz

Extracting region signals#

from nilearn.maskers import NiftiMapsMasker

masker = NiftiMapsMasker(
    msdl_atlas_dataset.maps,
    resampling_target="maps",
    detrend=True,
    high_variance_confounds=True,
    low_pass=None,
    high_pass=0.01,
    t_r=2,
    standardize="zscore_sample",
    standardize_confounds="zscore_sample",
    memory="nilearn_cache",
    memory_level=1,
    verbose=2,
)
masker.fit()

subject_time_series = []
func_filenames = rest_dataset.func
confound_filenames = rest_dataset.confounds
for func_filename, confound_filename in zip(
    func_filenames, confound_filenames
):
    print(f"Processing file {func_filename}")

    region_ts = masker.transform(func_filename, confounds=confound_filename)
    subject_time_series.append(region_ts)
[NiftiMapsMasker.fit] loading regions from None
Processing file /home/remi/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz
________________________________________________________________________________
[Memory] Calling nilearn.image.image.high_variance_confounds...
high_variance_confounds('/home/remi/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz')
__________________________________________high_variance_confounds - 0.9s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.maskers.base_masker._filter_and_extract...
_filter_and_extract('/home/remi/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz',
<nilearn.maskers.nifti_maps_masker._ExtractionFunctor object at 0x7fd1b5b51490>, { 'allow_overlap': True,
  'clean_kwargs': {},
  'detrend': True,
  'dtype': None,
  'high_pass': 0.01,
  'high_variance_confounds': True,
  'keep_masked_maps': True,
  'low_pass': None,
  'maps_img': '/home/remi/nilearn_data/msdl_atlas/MSDL_rois/msdl_rois.nii',
  'mask_img': None,
  'reports': True,
  'smoothing_fwhm': None,
  'standardize': 'zscore_sample',
  'standardize_confounds': 'zscore_sample',
  't_r': 2,
  'target_affine': array([[   4.,    0.,    0.,  -78.],
       [   0.,    4.,    0., -111.],
       [   0.,    0.,    4.,  -51.],
       [   0.,    0.,    0.,    1.]]),
  'target_shape': (40, 48, 35)}, confounds=[ array([[-0.174325, ..., -0.048779],
       ...,
       [-0.044073, ...,  0.155444]]),
  '/home/remi/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_desc-reducedConfounds_regressors.tsv'], sample_mask=None, dtype=None, memory=Memory(location=nilearn_cache/joblib), memory_level=1, verbose=2)
[NiftiMapsMasker.transform_single_imgs] Loading data from /home/remi/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz
[NiftiMapsMasker.transform_single_imgs] Resampling images
[NiftiMapsMasker.transform_single_imgs] Extracting region signals
[NiftiMapsMasker.transform_single_imgs] Cleaning extracted signals
_______________________________________________filter_and_extract - 7.4s, 0.1min
Processing file /home/remi/nilearn_data/development_fmri/development_fmri/sub-pixar001_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz
________________________________________________________________________________
[Memory] Calling nilearn.image.image.high_variance_confounds...
high_variance_confounds('/home/remi/nilearn_data/development_fmri/development_fmri/sub-pixar001_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz')
__________________________________________high_variance_confounds - 0.9s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.maskers.base_masker._filter_and_extract...
_filter_and_extract('/home/remi/nilearn_data/development_fmri/development_fmri/sub-pixar001_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz',
<nilearn.maskers.nifti_maps_masker._ExtractionFunctor object at 0x7fd1f01437d0>, { 'allow_overlap': True,
  'clean_kwargs': {},
  'detrend': True,
  'dtype': None,
  'high_pass': 0.01,
  'high_variance_confounds': True,
  'keep_masked_maps': True,
  'low_pass': None,
  'maps_img': '/home/remi/nilearn_data/msdl_atlas/MSDL_rois/msdl_rois.nii',
  'mask_img': None,
  'reports': True,
  'smoothing_fwhm': None,
  'standardize': 'zscore_sample',
  'standardize_confounds': 'zscore_sample',
  't_r': 2,
  'target_affine': array([[   4.,    0.,    0.,  -78.],
       [   0.,    4.,    0., -111.],
       [   0.,    0.,    4.,  -51.],
       [   0.,    0.,    0.,    1.]]),
  'target_shape': (40, 48, 35)}, confounds=[ array([[-0.151677, ..., -0.057023],
       ...,
       [-0.206928, ...,  0.102714]]),
  '/home/remi/nilearn_data/development_fmri/development_fmri/sub-pixar001_task-pixar_desc-reducedConfounds_regressors.tsv'], sample_mask=None, dtype=None, memory=Memory(location=nilearn_cache/joblib), memory_level=1, verbose=2)
[NiftiMapsMasker.transform_single_imgs] Loading data from /home/remi/nilearn_data/development_fmri/development_fmri/sub-pixar001_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz
[NiftiMapsMasker.transform_single_imgs] Resampling images
[NiftiMapsMasker.transform_single_imgs] Extracting region signals
[NiftiMapsMasker.transform_single_imgs] Cleaning extracted signals
_______________________________________________filter_and_extract - 7.6s, 0.1min
Processing file /home/remi/nilearn_data/development_fmri/development_fmri/sub-pixar002_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz
________________________________________________________________________________
[Memory] Calling nilearn.image.image.high_variance_confounds...
high_variance_confounds('/home/remi/nilearn_data/development_fmri/development_fmri/sub-pixar002_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz')
__________________________________________high_variance_confounds - 0.9s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.maskers.base_masker._filter_and_extract...
_filter_and_extract('/home/remi/nilearn_data/development_fmri/development_fmri/sub-pixar002_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz',
<nilearn.maskers.nifti_maps_masker._ExtractionFunctor object at 0x7fd1f2668dd0>, { 'allow_overlap': True,
  'clean_kwargs': {},
  'detrend': True,
  'dtype': None,
  'high_pass': 0.01,
  'high_variance_confounds': True,
  'keep_masked_maps': True,
  'low_pass': None,
  'maps_img': '/home/remi/nilearn_data/msdl_atlas/MSDL_rois/msdl_rois.nii',
  'mask_img': None,
  'reports': True,
  'smoothing_fwhm': None,
  'standardize': 'zscore_sample',
  'standardize_confounds': 'zscore_sample',
  't_r': 2,
  'target_affine': array([[   4.,    0.,    0.,  -78.],
       [   0.,    4.,    0., -111.],
       [   0.,    0.,    4.,  -51.],
       [   0.,    0.,    0.,    1.]]),
  'target_shape': (40, 48, 35)}, confounds=[ array([[ 0.127944, ..., -0.087084],
       ...,
       [-0.015679, ..., -0.02587 ]]),
  '/home/remi/nilearn_data/development_fmri/development_fmri/sub-pixar002_task-pixar_desc-reducedConfounds_regressors.tsv'], sample_mask=None, dtype=None, memory=Memory(location=nilearn_cache/joblib), memory_level=1, verbose=2)
[NiftiMapsMasker.transform_single_imgs] Loading data from /home/remi/nilearn_data/development_fmri/development_fmri/sub-pixar002_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz
[NiftiMapsMasker.transform_single_imgs] Resampling images
[NiftiMapsMasker.transform_single_imgs] Extracting region signals
[NiftiMapsMasker.transform_single_imgs] Cleaning extracted signals
_______________________________________________filter_and_extract - 7.5s, 0.1min
Processing file /home/remi/nilearn_data/development_fmri/development_fmri/sub-pixar003_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz
________________________________________________________________________________
[Memory] Calling nilearn.image.image.high_variance_confounds...
high_variance_confounds('/home/remi/nilearn_data/development_fmri/development_fmri/sub-pixar003_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz')
__________________________________________high_variance_confounds - 1.0s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.maskers.base_masker._filter_and_extract...
_filter_and_extract('/home/remi/nilearn_data/development_fmri/development_fmri/sub-pixar003_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz',
<nilearn.maskers.nifti_maps_masker._ExtractionFunctor object at 0x7fd1c4001210>, { 'allow_overlap': True,
  'clean_kwargs': {},
  'detrend': True,
  'dtype': None,
  'high_pass': 0.01,
  'high_variance_confounds': True,
  'keep_masked_maps': True,
  'low_pass': None,
  'maps_img': '/home/remi/nilearn_data/msdl_atlas/MSDL_rois/msdl_rois.nii',
  'mask_img': None,
  'reports': True,
  'smoothing_fwhm': None,
  'standardize': 'zscore_sample',
  'standardize_confounds': 'zscore_sample',
  't_r': 2,
  'target_affine': array([[   4.,    0.,    0.,  -78.],
       [   0.,    4.,    0., -111.],
       [   0.,    0.,    4.,  -51.],
       [   0.,    0.,    0.,    1.]]),
  'target_shape': (40, 48, 35)}, confounds=[ array([[-0.089762, ..., -0.062316],
       ...,
       [-0.065223, ..., -0.022868]]),
  '/home/remi/nilearn_data/development_fmri/development_fmri/sub-pixar003_task-pixar_desc-reducedConfounds_regressors.tsv'], sample_mask=None, dtype=None, memory=Memory(location=nilearn_cache/joblib), memory_level=1, verbose=2)
[NiftiMapsMasker.transform_single_imgs] Loading data from /home/remi/nilearn_data/development_fmri/development_fmri/sub-pixar003_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz
[NiftiMapsMasker.transform_single_imgs] Resampling images
[NiftiMapsMasker.transform_single_imgs] Extracting region signals
[NiftiMapsMasker.transform_single_imgs] Cleaning extracted signals
_______________________________________________filter_and_extract - 7.7s, 0.1min

Computing group-sparse precision matrices#

from nilearn.connectome import GroupSparseCovarianceCV

gsc = GroupSparseCovarianceCV(verbose=2)
gsc.fit(subject_time_series)

try:
    from sklearn.covariance import GraphicalLassoCV
except ImportError:
    # for Scitkit-Learn < v0.20.0
    from sklearn.covariance import GraphLassoCV as GraphicalLassoCV

gl = GraphicalLassoCV(verbose=2)
gl.fit(np.concatenate(subject_time_series))
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 2
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 7
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 0
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 2
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 0
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 2
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 0
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 1
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 1
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 0
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 2
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 6
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 0
[GroupSparseCovarianceCV.fit] [GroupSparseCovarianceCV] Done refinement  0 out of 4
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 3
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 6
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 1
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 0
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 4
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 0
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 3
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 0
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 0
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 3
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 6
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 0
[GroupSparseCovarianceCV.fit] [GroupSparseCovarianceCV] Done refinement  1 out of 4
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 5
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 1
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 1
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 9
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 10
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 0
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 5
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 0
[GroupSparseCovarianceCV.fit] [GroupSparseCovarianceCV] Done refinement  2 out of 4
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 6
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 1
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 1
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 11
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 11
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 5
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 0
[GroupSparseCovarianceCV.fit] Log-likelihood on test set is decreasing. Stopping at iteration 0
[GroupSparseCovarianceCV.fit] [GroupSparseCovarianceCV] Done refinement  3 out of 4
[GroupSparseCovarianceCV.fit] Final optimization
[GroupSparseCovarianceCV.fit] tolerance reached at iteration number 19: 8.841e-04
....................[GraphicalLassoCV] Done refinement  1 out of 4:   0s
....................[GraphicalLassoCV] Done refinement  2 out of 4:   1s
....................[GraphicalLassoCV] Done refinement  3 out of 4:   2s
....................[GraphicalLassoCV] Done refinement  4 out of 4:   4s
[graphical_lasso] Iteration   0, cost  1.68e+02, dual gap 1.123e+00
[graphical_lasso] Iteration   1, cost  1.68e+02, dual gap -1.664e-03
[graphical_lasso] Iteration   2, cost  1.68e+02, dual gap 1.158e-04
[graphical_lasso] Iteration   3, cost  1.68e+02, dual gap 1.389e-04
[graphical_lasso] Iteration   4, cost  1.68e+02, dual gap 1.530e-04
[graphical_lasso] Iteration   5, cost  1.68e+02, dual gap 1.318e-04
[graphical_lasso] Iteration   6, cost  1.68e+02, dual gap 6.844e-05
GraphicalLassoCV(verbose=2)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.


Displaying results#

atlas_img = msdl_atlas_dataset.maps
atlas_region_coords = plotting.find_probabilistic_atlas_cut_coords(atlas_img)
labels = msdl_atlas_dataset.labels

plotting.plot_connectome(
    gl.covariance_,
    atlas_region_coords,
    edge_threshold="90%",
    title="Covariance",
    display_mode="lzr",
)
plotting.plot_connectome(
    -gl.precision_,
    atlas_region_coords,
    edge_threshold="90%",
    title="Sparse inverse covariance (GraphicalLasso)",
    display_mode="lzr",
    edge_vmax=0.5,
    edge_vmin=-0.5,
)
plot_matrices(gl.covariance_, gl.precision_, "GraphicalLasso", labels)

title = "GroupSparseCovariance"
plotting.plot_connectome(
    -gsc.precisions_[..., 0],
    atlas_region_coords,
    edge_threshold="90%",
    title=title,
    display_mode="lzr",
    edge_vmax=0.5,
    edge_vmin=-0.5,
)
plot_matrices(gsc.covariances_[..., 0], gsc.precisions_[..., 0], title, labels)

plotting.show()
  • plot multi subject connectome
  • plot multi subject connectome
  • GraphicalLasso / covariance
  • GraphicalLasso / precision
  • plot multi subject connectome
  • GroupSparseCovariance / covariance
  • GroupSparseCovariance / precision

Total running time of the script: (1 minutes 49.614 seconds)

Estimated memory usage: 542 MB

Gallery generated by Sphinx-Gallery