Note
Go to the end to download the full example code or to run this example in your browser via Binder
Plot Haxby masks#
Small script to plot the masks of the Haxby dataset.
Load Haxby dataset#
from nilearn import datasets
haxby_dataset = datasets.fetch_haxby()
# print basic information on the dataset
print(
f"First subject anatomical nifti image (3D) is at: {haxby_dataset.anat[0]}"
)
print(
f"First subject functional nifti image (4D) is at: {haxby_dataset.func[0]}"
)
# Build the mean image because we have no anatomic data
from nilearn import image
func_filename = haxby_dataset.func[0]
mean_img = image.mean_img(func_filename)
z_slice = -14
First subject anatomical nifti image (3D) is at: /home/remi/nilearn_data/haxby2001/subj2/anat.nii.gz
First subject functional nifti image (4D) is at: /home/remi/nilearn_data/haxby2001/subj2/bold.nii.gz
Plot the masks#
import matplotlib.pyplot as plt
from nilearn.plotting import plot_anat, show
fig = plt.figure(figsize=(4, 5.4), facecolor="k")
display = plot_anat(
mean_img, display_mode="z", cut_coords=[z_slice], figure=fig
)
mask_vt_filename = haxby_dataset.mask_vt[0]
mask_house_filename = haxby_dataset.mask_house[0]
mask_face_filename = haxby_dataset.mask_face[0]
masks = [mask_vt_filename, mask_house_filename, mask_face_filename]
colors = ["red", "blue", "limegreen"]
for mask, color in zip(masks, colors):
display.add_contours(
mask,
contours=1,
antialiased=False,
linewidth=4.0,
levels=[0],
colors=[color],
)
# We generate a legend using the trick described on
# http://matplotlib.sourceforge.net/users/legend_guide.httpml#using-proxy-artist
from matplotlib.patches import Rectangle
p_v = Rectangle((0, 0), 1, 1, fc="red")
p_h = Rectangle((0, 0), 1, 1, fc="blue")
p_f = Rectangle((0, 0), 1, 1, fc="limegreen")
plt.legend([p_v, p_h, p_f], ["vt", "house", "face"], loc="lower right")
show()
/home/remi/github/nilearn/env/lib/python3.11/site-packages/nilearn/plotting/displays/_axes.py:74: UserWarning: The following kwargs were not used by contour: 'contours', 'linewidth'
im = getattr(ax, type)(
Total running time of the script: (0 minutes 5.996 seconds)
Estimated memory usage: 914 MB