Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the user guide for the big picture.
nilearn.maskers.MultiNiftiMasker#
- class nilearn.maskers.MultiNiftiMasker(mask_img=None, smoothing_fwhm=None, standardize=False, standardize_confounds=True, detrend=False, high_variance_confounds=False, low_pass=None, high_pass=None, t_r=None, target_affine=None, target_shape=None, mask_strategy='background', mask_args=None, dtype=None, memory=Memory(location=None), memory_level=0, n_jobs=1, verbose=0)[source]#
Class for masking of Niimg-like objects.
MultiNiftiMasker is useful when dealing with image sets from multiple subjects. Use case: integrates well with decomposition by MultiPCA and CanICA (multi-subject models)
- Parameters
- mask_imgNiimg-like object
See Input and output: neuroimaging data representation. Mask of the data. If not given, a mask is computed in the fit step. Optional parameters can be set using mask_args and mask_strategy to fine tune the mask extraction.
- smoothing_fwhm
float
, optional. If
smoothing_fwhm
is notNone
, it gives the full-width at half maximum in millimeters of the spatial smoothing to apply to the signal.- standardize{False, True, ‘zscore’, ‘psc’}, optional
Strategy to standardize the signal. ‘zscore’: the signal is z-scored. Timeseries are shifted to zero mean and scaled to unit variance. ‘psc’: Timeseries are shifted to zero mean value and scaled to percent signal change (as compared to original mean signal). True : the signal is z-scored. Timeseries are shifted to zero mean and scaled to unit variance. False : Do not standardize the data. Default=False.
- standardize_confounds
bool
, optional If standardize_confounds is True, the confounds are z-scored: their mean is put to 0 and their variance to 1 in the time dimension. Default=True.
- high_variance_confounds
bool
, optional If True, high variance confounds are computed on provided image with
nilearn.image.high_variance_confounds
and default parameters and regressed out. Default=False.- detrend
bool
, optional This parameter is passed to signal.clean. Please see the related documentation for details. Default=False.
- low_passNone or
float
, optional This parameter is passed to signal.clean. Please see the related documentation for details
- high_passNone or
float
, optional This parameter is passed to signal.clean. Please see the related documentation for details
- t_r
float
, optional This parameter is passed to signal.clean. Please see the related documentation for details
- target_affine3x3 or 4x4
numpy.ndarray
, optional This parameter is passed to image.resample_img. Please see the related documentation for details.
- target_shape3-
tuple
ofint
, optional This parameter is passed to image.resample_img. Please see the related documentation for details.
- mask_strategy{‘background’, ‘epi’, ‘whole-brain-template’,’gm-template’, ‘wm-template’}, optional
The strategy used to compute the mask:
‘background’: Use this option if your images present a clear homogeneous background.
‘epi’: Use this option if your images are raw EPI images
‘whole-brain-template’: This will extract the whole-brain part of your data by resampling the MNI152 brain mask for your data’s field of view.
Note
This option is equivalent to the previous ‘template’ option which is now deprecated.
‘gm-template’: This will extract the gray matter part of your data by resampling the corresponding MNI152 template for your data’s field of view.
New in version 0.8.1.
‘wm-template’: This will extract the white matter part of your data by resampling the corresponding MNI152 template for your data’s field of view.
New in version 0.8.1.
Note
Depending on this value, the mask will be computed from
nilearn.masking.compute_multi_background_mask
,nilearn.masking.compute_multi_epi_mask
, ornilearn.masking.compute_multi_brain_mask
.Default is ‘background’.
- mask_args
dict
, optional If mask is None, these are additional parameters passed to masking.compute_background_mask or masking.compute_epi_mask to fine-tune mask computation. Please see the related documentation for details.
- dtype{dtype, “auto”}, optional
Data type toward which the data should be converted. If “auto”, the data will be converted to int32 if dtype is discrete and float32 if it is continuous.
- memoryinstance of
joblib.Memory
orstr
, optional Used to cache the masking process. By default, no caching is done. If a string is given, it is the path to the caching directory.
- memory_level
int
, optional Rough estimator of the amount of memory used by caching. Higher value means more memory for caching. Default=0.
- n_jobs
int
, optional The number of CPUs to use to do the computation. -1 means ‘all CPUs’, -2 ‘all CPUs but one’, and so on. Default=1.
- verbose
int
, optional Indicate the level of verbosity. By default, nothing is printed. Default=0.
See also
nilearn.image.resample_img
image resampling
nilearn.masking.compute_epi_mask
mask computation
nilearn.masking.apply_mask
mask application on image
nilearn.signal.clean
confounds removal and general filtering of signals
- Attributes
- mask_img_
nibabel.nifti1.Nifti1Image
The mask of the data.
- affine_4x4
numpy.ndarray
Affine of the transformed image.
- n_elements_
int
The number of voxels in the mask.
New in version 0.9.2.
- mask_img_
- __init__(mask_img=None, smoothing_fwhm=None, standardize=False, standardize_confounds=True, detrend=False, high_variance_confounds=False, low_pass=None, high_pass=None, t_r=None, target_affine=None, target_shape=None, mask_strategy='background', mask_args=None, dtype=None, memory=Memory(location=None), memory_level=0, n_jobs=1, verbose=0)[source]#
- fit(imgs=None, y=None)[source]#
Compute the mask corresponding to the data.
- Parameters
- imgs
list
of Niimg-like objects See Input and output: neuroimaging data representation. Data on which the mask must be calculated. If this is a list, the affine is considered the same for all.
- yNone
This parameter is unused. It is solely included for scikit-learn compatibility.
- imgs
- transform_imgs(imgs_list, confounds=None, sample_mask=None, copy=True, n_jobs=1)[source]#
Prepare multi subject data in parallel
- Parameters
- imgs_list
list
of Niimg-like objects See Input and output: neuroimaging data representation. List of imgs file to prepare. One item per subject.
- confounds
list
of confounds, optional List of confounds (2D arrays or filenames pointing to CSV files or pandas DataFrames). Must be of same length than imgs_list.
- sample_mask
list
of sample_mask, optional List of sample_mask (1D arrays) if scrubbing motion outliers. Must be of same length than imgs_list.
New in version 0.8.0.
- copy
bool
, optional If True, guarantees that output array has no memory in common with input array. Default=True.
- n_jobs
int
, optional The number of cpus to use to do the computation. -1 means ‘all cpus’. Default=1.
- imgs_list
- Returns
- region_signals
list
of 2Dnumpy.ndarray
List of signal for each element per subject. shape: list of (number of scans, number of elements)
- region_signals
- Warns
- DeprecationWarning
If a 3D niimg input is provided, the current behavior (adding a singleton dimension to produce a 2D array) is deprecated. Starting in version 0.12, a 1D array will be returned for 3D inputs.
- transform(imgs, confounds=None, sample_mask=None)[source]#
Apply mask, spatial and temporal preprocessing.
- Parameters
- imgs
list
of Niimg-like objects See Input and output: neuroimaging data representation. Data to be preprocessed
- confoundsCSV file or 2D
numpy.ndarray
orpandas.DataFrame
, optional This parameter is passed to signal.clean. Please see the corresponding documentation for details.
- sample_mask
list
of 1Dnumpy.ndarray
, optional List of sample_mask (1D arrays) if scrubbing motion outliers. Must be of same length than imgs_list.
New in version 0.8.0.
- imgs
- Returns
- data
list
ofnumpy.ndarray
preprocessed images
- data
- Warns
- DeprecationWarning
If 3D niimg inputs are provided, the current behavior (adding a singleton dimension to produce 2D arrays) is deprecated. Starting in version 0.12, 1D arrays will be returned for 3D inputs.
- fit_transform(X, y=None, confounds=None, sample_mask=None, **fit_params)[source]#
Fit to data, then transform it
- Parameters
- XNiimg-like object
- ynumpy array of shape [n_samples], optional
Target values.
- confoundslist of confounds, optional
List of confounds (2D arrays or filenames pointing to CSV files). Must be of same length than imgs_list.
- sample_masklist of sample_mask, optional
List of sample_mask (1D arrays) if scrubbing motion outliers. Must be of same length than imgs_list.
New in version 0.8.0.
- Returns
- X_newnumpy array of shape [n_samples, n_features_new]
Transformed array.
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
- paramsdict
Parameter names mapped to their values.
- inverse_transform(X)[source]#
Transform the 2D data matrix back to an image in brain space.
- Parameters
- X1D/2D
numpy.ndarray
Signal for each element in the mask. If a 1D array is provided, then the shape should be (number of elements,), and a 3D img will be returned. If a 2D array is provided, then the shape should be (number of scans, number of elements), and a 4D img will be returned. See Input and output: neuroimaging data representation.
- X1D/2D
- Returns
- imgTransformed image in brain space.
- set_output(*, transform=None)#
Set output container.
See Introducing the set_output API for an example on how to use the API.
- Parameters
- transform{“default”, “pandas”}, default=None
Configure output of transform and fit_transform.
“default”: Default output format of a transformer
“pandas”: DataFrame output
None: Transform configuration is unchanged
- Returns
- selfestimator instance
Estimator instance.
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
- **paramsdict
Estimator parameters.
- Returns
- selfestimator instance
Estimator instance.
- transform_single_imgs(imgs, confounds=None, sample_mask=None, copy=True)[source]#
Apply mask, spatial and temporal preprocessing.
- Parameters
- imgs3D/4D Niimg-like object
See Input and output: neuroimaging data representation. Images to process. If a 3D niimg is provided, a singleton dimension will be added to the output to represent the single scan in the niimg.
- confoundsCSV file or array-like or
pandas.DataFrame
, optional This parameter is passed to signal.clean. Please see the related documentation for details:
nilearn.signal.clean
. shape: (number of scans, number of confounds)- sample_maskAny type compatible with numpy-array indexing, optional
shape: (number of scans - number of volumes removed, ) Masks the niimgs along time/fourth dimension to perform scrubbing (remove volumes with high motion) and/or non-steady-state volumes. This parameter is passed to signal.clean.
- copy
bool
, optional Indicates whether a copy is returned or not. Default=True.
- Returns
- region_signals2D
numpy.ndarray
Signal for each voxel inside the mask. shape: (number of scans, number of voxels)
- region_signals2D
- Warns
- DeprecationWarning
If a 3D niimg input is provided, the current behavior (adding a singleton dimension to produce a 2D array) is deprecated. Starting in version 0.12, a 1D array will be returned for 3D inputs.
Examples using nilearn.maskers.MultiNiftiMasker
#
Encoding models for visual stimuli from Miyawaki et al. 2008
Reconstruction of visual stimuli from Miyawaki et al. 2008