Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the user guide for the big picture.
nilearn.glm.first_level.FirstLevelModel#
- class nilearn.glm.first_level.FirstLevelModel(t_r=None, slice_time_ref=0.0, hrf_model='glover', drift_model='cosine', high_pass=0.01, drift_order=1, fir_delays=[0], min_onset=-24, mask_img=None, target_affine=None, target_shape=None, smoothing_fwhm=None, memory=Memory(location=None), memory_level=1, standardize=False, signal_scaling=0, noise_model='ar1', verbose=0, n_jobs=1, minimize_memory=True, subject_label=None, random_state=None)[source]#
Implementation of the General Linear Model for single session fMRI data.
- Parameters
- t_rfloat
This parameter indicates repetition times of the experimental runs. In seconds. It is necessary to correctly consider times in the design matrix. This parameter is also passed to
nilearn.signal.clean
. Please see the related documentation for details.- slice_time_reffloat, optional
This parameter indicates the time of the reference slice used in the slice timing preprocessing step of the experimental runs. It is expressed as a percentage of the t_r (time repetition), so it can have values between 0. and 1. Default=0.
- hrf_model
str
, function, list of functions, or None This parameter defines the HRF model to be used. It can be a string if you are passing the name of a model implemented in Nilearn. Valid names are:
‘spm’: This is the HRF model used in SPM. See
nilearn.glm.first_level.spm_hrf
.‘spm + derivative’: SPM model plus its time derivative. This gives 2 regressors. See
nilearn.glm.first_level.spm_hrf
, andnilearn.glm.first_level.spm_time_derivative
.‘spm + derivative + dispersion’: Idem, plus dispersion derivative. This gives 3 regressors. See
nilearn.glm.first_level.spm_hrf
,nilearn.glm.first_level.spm_time_derivative
, andnilearn.glm.first_level.spm_dispersion_derivative
.‘glover’: This corresponds to the Glover HRF. See
nilearn.glm.first_level.glover_hrf
.‘glover + derivative’: The Glover HRF + time derivative. This gives 2 regressors. See
nilearn.glm.first_level.glover_hrf
, andnilearn.glm.first_level.glover_time_derivative
.‘glover + derivative + dispersion’: Idem, plus dispersion derivative. This gives 3 regressors. See
nilearn.glm.first_level.glover_hrf
,nilearn.glm.first_level.glover_time_derivative
, andnilearn.glm.first_level.glover_dispersion_derivative
.‘fir’: Finite impulse response basis. This is a set of delayed dirac models.
It can also be a custom model. In this case, a function should be provided for each regressor. Each function should behave as the other models implemented within Nilearn. That is, it should take both t_r and oversampling as inputs and return a sample numpy array of appropriate shape.
Note
It is expected that spm standard and glover models would not yield large differences in most cases.
Note
In case of glover and spm models, the derived regressors are orthogonalized wrt the main one.
Default=’glover’.
- drift_modelstring, optional
This parameter specifies the desired drift model for the design matrices. It can be ‘polynomial’, ‘cosine’ or None. Default=’cosine’.
- high_passfloat, optional
This parameter specifies the cut frequency of the high-pass filter in Hz for the design matrices. Used only if drift_model is ‘cosine’. Default=0.01.
- drift_orderint, optional
This parameter specifies the order of the drift model (in case it is polynomial) for the design matrices. Default=1.
- fir_delaysarray of shape(n_onsets) or list, optional
In case of FIR design, yields the array of delays used in the FIR model, in scans. Default=[0].
- min_onsetfloat, optional
This parameter specifies the minimal onset relative to the design (in seconds). Events that start before (slice_time_ref * t_r + min_onset) are not considered. Default=-24.
- mask_imgNiimg-like, NiftiMasker object or False, optional
Mask to be used on data. If an instance of masker is passed, then its mask will be used. If no mask is given, it will be computed automatically by a NiftiMasker with default parameters. If False is given then the data will not be masked.
- target_affine3x3 or 4x4 matrix, optional
This parameter is passed to nilearn.image.resample_img. Please see the related documentation for details.
- target_shape3-tuple of integers, optional
This parameter is passed to nilearn.image.resample_img. Please see the related documentation for details.
- smoothing_fwhm
float
, optional. If
smoothing_fwhm
is notNone
, it gives the full-width at half maximum in millimeters of the spatial smoothing to apply to the signal.- memorystring or pathlib.Path, optional
Path to the directory used to cache the masking process and the glm fit. By default, no caching is done. Creates instance of joblib.Memory.
- memory_levelinteger, optional
Rough estimator of the amount of memory used by caching. Higher value means more memory for caching.
- standardizeboolean, optional
If standardize is True, the time-series are centered and normed: their variance is put to 1 in the time dimension. Default=False.
- signal_scalingFalse, int or (int, int), optional
If not False, fMRI signals are scaled to the mean value of scaling_axis given, which can be 0, 1 or (0, 1). 0 refers to mean scaling each voxel with respect to time, 1 refers to mean scaling each time point with respect to all voxels & (0, 1) refers to scaling with respect to voxels and time, which is known as grand mean scaling. Incompatible with standardize (standardize=False is enforced when signal_scaling is not False). Default=0.
- noise_model{‘ar1’, ‘ols’}, optional
The temporal variance model. Default=’ar1’.
- verboseinteger, optional
Indicate the level of verbosity. By default, nothing is printed. If 0 prints nothing. If 1 prints progress by computation of each run. If 2 prints timing details of masker and GLM. If 3 prints masker computation details. Default=0.
- n_jobsinteger, optional
The number of CPUs to use to do the computation. -1 means ‘all CPUs’, -2 ‘all CPUs but one’, and so on. Default=1.
- minimize_memoryboolean, optional
Gets rid of some variables on the model fit results that are not necessary for contrast computation and would only be useful for further inspection of model details. This has an important impact on memory consumption. Default=True.
- subject_labelstring, optional
This id will be used to identify a FirstLevelModel when passed to a SecondLevelModel object.
- random_stateint or numpy.random.RandomState, optional
Random state seed to sklearn.cluster.KMeans for autoregressive models of order at least 2 (‘ar(N)’ with n >= 2). Default=None.
New in version 0.9.1.
- Attributes
- labels_array of shape (n_voxels,),
a map of values on voxels used to identify the corresponding model
- results_dict,
with keys corresponding to the different labels values. Values are SimpleRegressionResults corresponding to the voxels, if minimize_memory is True, RegressionResults if minimize_memory is False
- __init__(t_r=None, slice_time_ref=0.0, hrf_model='glover', drift_model='cosine', high_pass=0.01, drift_order=1, fir_delays=[0], min_onset=-24, mask_img=None, target_affine=None, target_shape=None, smoothing_fwhm=None, memory=Memory(location=None), memory_level=1, standardize=False, signal_scaling=0, noise_model='ar1', verbose=0, n_jobs=1, minimize_memory=True, subject_label=None, random_state=None)[source]#
- property scaling_axis#
- fit(run_imgs, events=None, confounds=None, sample_masks=None, design_matrices=None, bins=100)[source]#
Fit the GLM
For each run: 1. create design matrix X 2. do a masker job: fMRI_data -> Y 3. fit regression to (Y, X)
- Parameters
- run_imgsNiimg-like object or list of Niimg-like objects,
Data on which the GLM will be fitted. If this is a list, the affine is considered the same for all.
- eventspandas Dataframe or string or list of pandas DataFrames or strings, optional
fMRI events used to build design matrices. One events object expected per run_img. Ignored in case designs is not None. If string, then a path to a csv file is expected.
- confoundspandas Dataframe, numpy array or string or
list of pandas DataFrames, numpy arrays or strings, optional Each column in a DataFrame corresponds to a confound variable to be included in the regression model of the respective run_img. The number of rows must match the number of volumes in the respective run_img. Ignored in case designs is not None. If string, then a path to a csv file is expected.
- sample_masksarray_like, or list of array_like, optional
shape of array: (number of scans - number of volumes removed, ) Indices of retained volumes. Masks the niimgs along time/fourth dimension to perform scrubbing (remove volumes with high motion) and/or remove non-steady-state volumes. Default=None.
New in version 0.9.2.
- design_matricespandas DataFrame or list of pandas DataFrames, optional
Design matrices that will be used to fit the GLM. If given it takes precedence over events and confounds.
- binsint, optional
Maximum number of discrete bins for the AR coef histogram. If an autoregressive model with order greater than one is specified then adaptive quantification is performed and the coefficients will be clustered via K-means with bins number of clusters. Default=100.
- compute_contrast(contrast_def, stat_type=None, output_type='z_score')[source]#
Generate different outputs corresponding to the contrasts provided e.g. z_map, t_map, effects and variance. In multi-session case, outputs the fixed effects map.
- Parameters
- contrast_defstr or array of shape (n_col) or list of (string or
array of shape (n_col))
where
n_col
is the number of columns of the design matrix, (one array per run). If only one array is provided when there are several runs, it will be assumed that the same contrast is desired for all runs. One can use the name of the conditions as they appear in the design matrix of the fitted model combined with operators +- and combined with numbers with operators +-*/. In this case, the string defining the contrasts must be a valid expression for compatibility withpandas.DataFrame.eval
.- stat_type{‘t’, ‘F’}, optional
Type of the contrast.
- output_typestr, optional
Type of the output map. Can be ‘z_score’, ‘stat’, ‘p_value’, ‘effect_size’, ‘effect_variance’ or ‘all’. Default=’z_score’.
- Returns
- outputNifti1Image or dict
The desired output image(s). If
output_type == 'all'
, then the output is a dictionary of images, keyed by the type of image.
- fit_transform(X, y=None, **fit_params)#
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters
- Xarray-like of shape (n_samples, n_features)
Input samples.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
Target values (None for unsupervised transformations).
- **fit_paramsdict
Additional fit parameters.
- Returns
- X_newndarray array of shape (n_samples, n_features_new)
Transformed array.
- generate_report(contrasts, title=None, bg_img='MNI152TEMPLATE', threshold=3.09, alpha=0.001, cluster_threshold=0, height_control='fpr', min_distance=8.0, plot_type='slice', display_mode=None, report_dims=(1600, 800))[source]#
Returns a
HTMLReport
which shows all important aspects of a fitted GLM.The
HTMLReport
can be opened in a browser, displayed in a notebook, or saved to disk as a standalone HTML file.The GLM must be fitted and have the computed design matrix(ces).
Note
The
FirstLevelModel
orSecondLevelModel
must have been fitted prior to callinggenerate_report
.- Parameters
- contrasts
dict
[str
,ndarray
] orstr
orlist
[str
] orndarray
orlist
[ndarray
] Contrasts information for a
FirstLevelModel
orSecondLevelModel
.Example:
Dict of contrast names and coefficients, or list of contrast names or list of contrast coefficients or contrast name or contrast coefficient
Each contrast name must be a string. Each contrast coefficient must be a list or numpy array of ints.
Contrasts are passed to
contrast_def
forFirstLevelModel
throughcompute_contrast
, andsecond_level_contrast
forSecondLevelModel
throughcompute_contrast
.- title
str
, optional If a
str
, it represents the web page’s title and primary heading, model type is sub-heading.If
None
, page titles and headings are autogenerated using contrast names.
- bg_imgNiimg-like object, optional
Default is the MNI152 template (Default=’MNI152TEMPLATE’) See Input and output: neuroimaging data representation. The background image for mask and stat maps to be plotted on upon. To turn off background image, just pass “bg_img=None”.
- threshold
float
, optional Cluster forming threshold in same scale as
stat_img
(either a t-scale or z-scale value). Used only ifheight_control
isNone
. Default=3.09- alpha
float
, optional Number controlling the thresholding (either a p-value or q-value). Its actual meaning depends on the
height_control
parameter. This function translates alpha to a z-scale threshold. Default=0.001- cluster_threshold
int
, optional Cluster size threshold, in voxels. Default=0
- height_control
str
or None, optional False positive control meaning of cluster forming threshold: ‘fpr’, ‘fdr’, ‘bonferroni’ or
None
. Default=’fpr’.- min_distance
float
, optional For display purposes only. Minimum distance between subpeaks in mm. Default=8mm.
- plot_type{‘slice’, ‘glass’}, optional
Specifies the type of plot to be drawn for the statistical maps. Default=’slice’.
- display_mode{‘ortho’, ‘x’, ‘y’, ‘z’, ‘xz’, ‘yx’, ‘yz’, ‘l’, ‘r’, ‘lr’, ‘lzr’, ‘lyr’, ‘lzry’, ‘lyrz’}, optional
Choose the direction of the cuts:
‘x’ - sagittal
‘y’ - coronal
‘z’ - axial
‘l’ - sagittal left hemisphere only
‘r’ - sagittal right hemisphere only
‘ortho’ - three cuts are performed in orthogonal directions
Default is ‘z’ if
plot_type
is ‘slice’; ‘ortho’ ifplot_type
is ‘glass’.- report_dimsSequence[
int
,int
], optional Specifies width, height (in pixels) of report window within a notebook. Only applicable when inserting the report into a Jupyter notebook. Can be set after report creation using
report.width
,report.height
. Default=(1600, 800).
- contrasts
- Returns
- report_text
HTMLReport
Contains the HTML code for the GLM report.
- report_text
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
- paramsdict
Parameter names mapped to their values.
- predicted()[source]#
Transform voxelwise predicted values to the same shape as the input Nifti1Image(s)
- Returns
- outputlist
A list of Nifti1Image(s).
- r_square()[source]#
Transform voxelwise r-squared values to the same shape as the input Nifti1Image(s)
- Returns
- outputlist
A list of Nifti1Image(s).
- residuals()[source]#
Transform voxelwise residuals to the same shape as the input Nifti1Image(s)
- Returns
- outputlist
A list of Nifti1Image(s).
- set_output(*, transform=None)#
Set output container.
See Introducing the set_output API for an example on how to use the API.
- Parameters
- transform{“default”, “pandas”}, default=None
Configure output of transform and fit_transform.
“default”: Default output format of a transformer
“pandas”: DataFrame output
None: Transform configuration is unchanged
- Returns
- selfestimator instance
Estimator instance.
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
- **paramsdict
Estimator parameters.
- Returns
- selfestimator instance
Estimator instance.
Examples using nilearn.glm.first_level.FirstLevelModel
#
Intro to GLM Analysis: a single-session, single-subject fMRI dataset
Decoding of a dataset after GLM fit for signal extraction
Example of explicit fixed effects fMRI model fitting
Default Mode Network extraction of ADHD dataset
Analysis of an fMRI dataset with a Finite Impule Response (FIR) model
Single-subject data (two sessions) in native space
Simple example of two-session fMRI model fitting
Predicted time series and residuals
First level analysis of a complete BIDS dataset from openneuro
Understanding parameters of the first-level model
BIDS dataset first and second level analysis
Beta-Series Modeling for Task-Based Functional Connectivity and Decoding