Decoding of a dataset after GLM fit for signal extraction#

Full step-by-step example of fitting a GLM to perform a decoding experiment. We use the data from one subject of the Haxby dataset.

More specifically:

  1. Download the Haxby dataset.

  2. Extract the information to generate a glm representing the blocks of stimuli.

  3. Analyze the decoding performance using a classifier.

Fetch example Haxby dataset#

We download the Haxby dataset This is a study of visual object category representation

# By default 2nd subject will be fetched
import numpy as np
import pandas as pd
from nilearn import datasets
haxby_dataset = datasets.fetch_haxby()

# repetition has to be known
TR = 2.5

Load the behavioral data#

# Load target information as string and give a numerical identifier to each
behavioral = pd.read_csv(haxby_dataset.session_target[0], sep=' ')
conditions = behavioral['labels'].values

# Record these as an array of sessions
sessions = behavioral['chunks'].values
unique_sessions = behavioral['chunks'].unique()

# fMRI data: a unique file for each session
func_filename = haxby_dataset.func[0]

Build a proper event structure for each session#

events = {}
# events will take  the form of a dictionary of Dataframes, one per session
for session in unique_sessions:
    # get the condition label per session
    conditions_session = conditions[sessions == session]
    # get the number of scans per session, then the corresponding
    # vector of frame times
    n_scans = len(conditions_session)
    frame_times = TR * np.arange(n_scans)
    # each event last the full TR
    duration = TR * np.ones(n_scans)
    # Define the events object
    events_ = pd.DataFrame(
        {'onset': frame_times, 'trial_type': conditions_session, 'duration': duration})
    # remove the rest condition and insert into the dictionary
    events[session] = events_[events_.trial_type != 'rest']

Instantiate and run FirstLevelModel#

We generate a list of z-maps together with their session and condition index

z_maps = []
conditions_label = []
session_label = []

# Instantiate the glm
from nilearn.glm.first_level import FirstLevelModel
glm = FirstLevelModel(t_r=TR,
                      mask_img=haxby_dataset.mask,
                      high_pass=.008,
                      smoothing_fwhm=4,
                      memory='nilearn_cache')

Run the glm on data from each session#

events[session].trial_type.unique()
from nilearn.image import index_img
for session in unique_sessions:
    # grab the fmri data for that particular session
    fmri_session = index_img(func_filename, sessions == session)

    # fit the glm
    glm.fit(fmri_session, events=events[session])

    # set up contrasts: one per condition
    conditions = events[session].trial_type.unique()
    for condition_ in conditions:
        z_maps.append(glm.compute_contrast(condition_))
        conditions_label.append(condition_)
        session_label.append(session)
________________________________________________________________________________
[Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask...
_filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7fc1a855ff70>, <nibabel.nifti1.Nifti1Image object at 0x7fc1a855ebf0>, { 'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'runs': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-0.114769, ..., -2.149296],
       ...,
       [ 2.367151, ...,  0.779998]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.8s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.44475 , ...,  0.379275]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a855ebf0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.013524, ...,  0.844135]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a855ebf0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.217486, ..., -1.430348]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a855ebf0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.106474, ..., -0.182434]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a855ebf0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.747494, ..., -1.660679]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a855ebf0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.080159, ..., -1.32614 ]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a855ebf0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.253894, ..., -0.452682]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a855ebf0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.240914, ..., 0.244136]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a855ebf0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask...
_filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7fc1f019b1c0>, <nibabel.nifti1.Nifti1Image object at 0x7fc1a77a8c40>, { 'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'runs': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[ 12.660587, ..., -13.536042],
       ...,
       [ -3.254408, ..., -33.842804]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.7s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.871458, ..., -0.990755]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77a8c40>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.627194, ..., -1.290147]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77a8c40>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.153013, ..., -1.320123]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77a8c40>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.15748 , ...,  2.082416]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77a8c40>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.997775, ..., -0.754066]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77a8c40>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.109412, ..., 1.330079]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77a8c40>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.030863, ..., -1.731439]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77a8c40>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.559734, ..., -0.720924]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77a8c40>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask...
_filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7fc1b2ddb580>, <nibabel.nifti1.Nifti1Image object at 0x7fc1b2ddae90>, { 'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'runs': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[ 5.205584, ..., 26.587189],
       ...,
       [-6.836576, ..., 10.676956]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.7s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.695564, ..., -0.455092]), <nibabel.nifti1.Nifti1Image object at 0x7fc1b2ddae90>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.457214, ..., 1.537178]), <nibabel.nifti1.Nifti1Image object at 0x7fc1b2ddae90>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.803925, ...,  0.570463]), <nibabel.nifti1.Nifti1Image object at 0x7fc1b2ddae90>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.614932, ...,  0.232909]), <nibabel.nifti1.Nifti1Image object at 0x7fc1b2ddae90>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.527175, ..., -1.062723]), <nibabel.nifti1.Nifti1Image object at 0x7fc1b2ddae90>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.126756, ..., -2.274819]), <nibabel.nifti1.Nifti1Image object at 0x7fc1b2ddae90>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.635166, ..., -0.395548]), <nibabel.nifti1.Nifti1Image object at 0x7fc1b2ddae90>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.250365, ..., 0.364311]), <nibabel.nifti1.Nifti1Image object at 0x7fc1b2ddae90>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask...
_filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7fc1d97a6350>, <nibabel.nifti1.Nifti1Image object at 0x7fc1a77aa2c0>, { 'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'runs': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-2.026206, ...,  5.974948],
       ...,
       [ 2.616334, ...,  0.104535]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.7s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.503142, ..., -1.639351]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77aa2c0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.271132, ..., -0.047089]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77aa2c0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.318104, ..., 0.724813]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77aa2c0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.073279, ..., -0.316956]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77aa2c0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.380183, ..., -0.690685]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77aa2c0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.631912, ..., -0.753286]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77aa2c0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.155784, ..., -0.065658]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77aa2c0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.186135, ..., -0.69267 ]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77aa2c0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask...
_filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7fc1ab839f60>, <nibabel.nifti1.Nifti1Image object at 0x7fc1ab838fd0>, { 'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'runs': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[ 53.033577, ..., -55.45955 ],
       ...,
       [-51.57195 , ..., -55.994713]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.6s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.158342, ..., -0.068131]), <nibabel.nifti1.Nifti1Image object at 0x7fc1ab838fd0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.396497, ..., -0.424937]), <nibabel.nifti1.Nifti1Image object at 0x7fc1ab838fd0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.091867, ...,  0.463109]), <nibabel.nifti1.Nifti1Image object at 0x7fc1ab838fd0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.054041, ..., -0.122921]), <nibabel.nifti1.Nifti1Image object at 0x7fc1ab838fd0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.025223, ...,  0.562991]), <nibabel.nifti1.Nifti1Image object at 0x7fc1ab838fd0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.001653, ..., -0.968729]), <nibabel.nifti1.Nifti1Image object at 0x7fc1ab838fd0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.274665, ..., -0.667   ]), <nibabel.nifti1.Nifti1Image object at 0x7fc1ab838fd0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.564329, ..., 1.496068]), <nibabel.nifti1.Nifti1Image object at 0x7fc1ab838fd0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask...
_filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7fc1a859bf40>, <nibabel.nifti1.Nifti1Image object at 0x7fc1a77a96f0>, { 'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'runs': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-27.150482, ...,  -5.81308 ],
       ...,
       [-30.204891, ...,   7.417917]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.7s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.987059, ...,  1.41717 ]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77a96f0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.24774 , ...,  0.674399]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77a96f0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.731234, ...,  1.341998]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77a96f0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.714869, ...,  1.182988]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77a96f0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.222674, ...,  0.480354]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77a96f0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.366899, ..., -0.091153]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77a96f0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.2708  , ..., -0.247146]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77a96f0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.251249, ..., -0.413063]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77a96f0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask...
_filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7fc1a7c22950>, <nibabel.nifti1.Nifti1Image object at 0x7fc1a855ebc0>, { 'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'runs': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[129.51173 , ..., -15.279282],
       ...,
       [-18.911755, ...,  21.839058]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.6s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.290412, ..., -0.609221]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a855ebc0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.090297, ..., -0.822602]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a855ebc0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.747918, ..., -0.108861]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a855ebc0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.095788, ..., -1.376995]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a855ebc0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.807425, ...,  1.826947]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a855ebc0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.017351, ..., 0.622242]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a855ebc0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.625042, ..., -0.231224]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a855ebc0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.056424, ..., -1.672737]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a855ebc0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask...
_filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7fc1c070b3d0>, <nibabel.nifti1.Nifti1Image object at 0x7fc1c0709ea0>, { 'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'runs': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-15.915996, ...,  22.07737 ],
       ...,
       [-16.981215, ...,   3.372383]], dtype=float32),
array([[ 0.      , ...,  1.      ],
       ...,
       [-0.200737, ...,  1.      ]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.7s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.008536, ..., -0.066075]), <nibabel.nifti1.Nifti1Image object at 0x7fc1c0709ea0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 1.168487, ..., -0.636238]), <nibabel.nifti1.Nifti1Image object at 0x7fc1c0709ea0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.145684, ..., 0.932773]), <nibabel.nifti1.Nifti1Image object at 0x7fc1c0709ea0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.580823, ..., -0.455655]), <nibabel.nifti1.Nifti1Image object at 0x7fc1c0709ea0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.685537, ...,  0.715791]), <nibabel.nifti1.Nifti1Image object at 0x7fc1c0709ea0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.245273, ..., -0.099707]), <nibabel.nifti1.Nifti1Image object at 0x7fc1c0709ea0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.79538 , ..., 1.913842]), <nibabel.nifti1.Nifti1Image object at 0x7fc1c0709ea0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([3.519925, ..., 0.629218]), <nibabel.nifti1.Nifti1Image object at 0x7fc1c0709ea0>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask...
_filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7fc1ab83ae30>, <nibabel.nifti1.Nifti1Image object at 0x7fc1f0416560>, { 'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'runs': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-0.292987, ..., 18.392956],
       ...,
       [-3.935719, ...,  0.602484]], dtype=float32),
array([[ 0.      , ...,  1.      ],
       ...,
       [-0.200737, ...,  1.      ]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.7s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.425611, ...,  2.348025]), <nibabel.nifti1.Nifti1Image object at 0x7fc1f0416560>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.31867 , ..., 0.408223]), <nibabel.nifti1.Nifti1Image object at 0x7fc1f0416560>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.534932, ..., -0.150519]), <nibabel.nifti1.Nifti1Image object at 0x7fc1f0416560>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.149007, ..., 0.640215]), <nibabel.nifti1.Nifti1Image object at 0x7fc1f0416560>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.640699, ..., 1.50369 ]), <nibabel.nifti1.Nifti1Image object at 0x7fc1f0416560>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.246384, ..., -1.346316]), <nibabel.nifti1.Nifti1Image object at 0x7fc1f0416560>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.162243, ..., -0.519251]), <nibabel.nifti1.Nifti1Image object at 0x7fc1f0416560>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.203695, ..., -1.335337]), <nibabel.nifti1.Nifti1Image object at 0x7fc1f0416560>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask...
_filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7fc1b9adfa00>, <nibabel.nifti1.Nifti1Image object at 0x7fc1b9adc730>, { 'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'runs': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-5.223948, ..., -5.959582],
       ...,
       [-7.677519, ..., 16.024363]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.7s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.034515, ...,  1.612397]), <nibabel.nifti1.Nifti1Image object at 0x7fc1b9adc730>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.62798 , ..., 1.160445]), <nibabel.nifti1.Nifti1Image object at 0x7fc1b9adc730>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.506632, ..., 0.459388]), <nibabel.nifti1.Nifti1Image object at 0x7fc1b9adc730>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.261016, ..., -0.747236]), <nibabel.nifti1.Nifti1Image object at 0x7fc1b9adc730>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.231796, ...,  1.098904]), <nibabel.nifti1.Nifti1Image object at 0x7fc1b9adc730>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.148582, ...,  0.999934]), <nibabel.nifti1.Nifti1Image object at 0x7fc1b9adc730>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-2.548262, ...,  0.09934 ]), <nibabel.nifti1.Nifti1Image object at 0x7fc1b9adc730>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.222824, ...,  0.318977]), <nibabel.nifti1.Nifti1Image object at 0x7fc1b9adc730>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask...
_filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7fc1a8266860>, <nibabel.nifti1.Nifti1Image object at 0x7fc1a8266470>, { 'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'runs': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-19.66533 , ...,  -6.299562],
       ...,
       [-24.647343, ...,   2.331865]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.6s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.175763, ..., -3.429485]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a8266470>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-3.146358, ..., -2.947626]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a8266470>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.806852, ..., -2.720554]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a8266470>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.008926, ...,  0.4544  ]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a8266470>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.279543, ..., 1.828183]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a8266470>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.463642, ...,  0.26599 ]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a8266470>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.058735, ..., -1.191442]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a8266470>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.390268, ..., -1.112207]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a8266470>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask...
_filter_and_mask(<nibabel.nifti1.Nifti1Image object at 0x7fc1a855efb0>, <nibabel.nifti1.Nifti1Image object at 0x7fc1a77a9480>, { 'detrend': False,
  'dtype': None,
  'high_pass': None,
  'high_variance_confounds': False,
  'low_pass': None,
  'reports': True,
  'runs': None,
  'smoothing_fwhm': 4,
  'standardize': False,
  'standardize_confounds': True,
  't_r': 2.5,
  'target_affine': None,
  'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None)
__________________________________________________filter_and_mask - 1.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.glm.first_level.first_level.run_glm...
run_glm(array([[-1.095605, ..., 16.449202],
       ...,
       [ 2.59974 , ..., -2.179998]], dtype=float32),
array([[0., ..., 1.],
       ...,
       [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None)
__________________________________________________________run_glm - 1.7s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.340751, ..., -1.056108]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77a9480>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.043261, ..., 1.144442]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77a9480>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([1.517954, ..., 0.611394]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77a9480>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-5.797134e-01, ...,  4.317655e-06]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77a9480>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([ 0.398581, ..., -0.488427]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77a9480>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([0.714396, ..., 0.869941]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77a9480>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-0.924894, ...,  0.723724]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77a9480>)
___________________________________________________________unmask - 0.2s, 0.0min
________________________________________________________________________________
[Memory] Calling nilearn.masking.unmask...
unmask(array([-1.145297, ..., -0.821272]), <nibabel.nifti1.Nifti1Image object at 0x7fc1a77a9480>)
___________________________________________________________unmask - 0.2s, 0.0min

Generating a report#

Since we have already computed the FirstLevelModel and have the contrast, we can quickly create a summary report.

from nilearn.image import mean_img
from nilearn.reporting import make_glm_report
mean_img_ = mean_img(func_filename)
report = make_glm_report(glm,
                         contrasts=conditions,
                         bg_img=mean_img_,
                         )

report  # This report can be viewed in a notebook

Statistical Report for bottle, cat, chair, face, house, scissors, scrambledpix, shoe

First Level Model

Model details:

drift_modelcosine
drift_order1
fir_delays[0]
high_pass (Hz)0.01
hrf_modelglover
noise_modelar1
scaling_axis0
signal_scaling0
slice_time_ref0.0
smoothing_fwhm4
standardizeFalse
subject_labelNone
t_r (s)2.5
target_affineNone
target_shapeNone

Design Matrix:

Plot of Design Matrix used in Session 1.

Contrasts

Plot of the contrast: bottle.Plot of the contrast: house.Plot of the contrast: chair.Plot of the contrast: scrambledpix.Plot of the contrast: face.Plot of the contrast: shoe.Plot of the contrast: cat.Plot of the contrast: scissors.

Mask

Model did not supply a mask image.

Stat Maps with Cluster Tables

bottle

Stat map plot for the contrast: bottle
Contrast Plot Plot of the contrast: bottle.

Cluster Table
Height controlfpr
α0.0
Threshold (computed)3.29
Cluster size threshold (voxels)0
Minimum distance (mm)8.0

Cluster IDXYZPeak StatCluster Size (mm3)
1-36.75-46.88-46.886.63147
2-54.2513.125.626.6298
329.75-20.62-24.386.33393
4-1.75-39.3813.126.33196
533.25-43.12-43.126.212264
5a22.75-31.88-39.385.95
5b8.75-50.62-35.625.77
6-43.7528.12-9.386.16196
7-57.75-39.389.386.12246
8-19.25-24.38-43.126.04541
8a-19.25-31.88-39.385.59
926.25-20.62-13.125.94344
10-40.25-35.62-35.625.92344
1126.25-46.88-46.885.86147
1222.75-46.88-61.885.83492
12a22.75-58.12-61.885.39
1319.25-54.38-43.125.811132
14-12.25-24.38-76.885.71196
1519.25-76.88-13.125.70639
1643.75-50.62-5.625.64984
16a47.25-43.12-1.884.69
1722.75-43.129.385.64246
18-26.25-16.88-24.385.63147
1912.25-28.12-73.125.62246
20-1.75-50.62-39.385.61147
2140.2516.88-20.625.5949
22-29.759.38-28.125.53246
2326.25-69.38-16.885.50787
23a36.75-65.62-13.124.90
241.7550.62-16.885.49344
25-50.7535.62-16.885.48196
26-15.75-28.12-43.125.4849
2733.255.62-13.125.47492
27a26.259.38-16.885.44
2812.25-58.12-28.125.46393
2912.25-84.38-28.125.4498
30-47.25-13.1213.125.42295
31-19.25-50.62-39.385.37590
31a-8.75-35.62-39.384.34
31b-12.25-46.88-39.383.83
32-33.25-73.1231.885.3449
33-29.75-43.12-50.625.31393
34-54.25-31.88-13.125.3149
351.75-43.12-1.885.28147
3612.25-13.12-28.125.2598
37-12.255.62-16.885.2549
3829.751.88-9.385.2398
39-57.75-16.881.885.2398
405.25-61.88-20.625.22295
41-47.25-39.38-20.625.171132
41a-50.75-39.38-9.384.55
4240.25-35.62-24.385.162214
42a47.25-24.38-13.125.04
42b47.25-35.62-20.624.36
43-29.75-84.381.885.16442
43a-36.75-76.881.884.69
4422.75-20.62-35.625.0998
4519.25-43.12-20.625.08147
46-47.25-9.385.625.06295
475.25-76.8824.385.0549
48-33.2513.1228.125.04246
49-40.2524.38-9.385.0449
5033.2520.62-20.625.0398
518.75-91.885.625.0349
52-26.25-54.38-46.885.02147
5326.2531.88-31.885.01147
54-26.25-20.62-13.125.0098
55-61.25-5.6220.625.00344
5633.259.38-24.385.0098
571.75-58.12-24.384.9998
58-40.25-39.3831.884.97344
58a-29.75-39.3831.884.29
59-47.25-61.88-5.624.9649
6029.75-50.62-50.624.95196
61-15.75-76.8828.124.94295
62-8.75-46.88-65.624.94246
63-43.7550.6216.884.9349
6422.75-20.62-28.124.90344
64a12.25-20.62-31.884.58
65-19.25-58.12-9.384.8998
66-54.25-46.88-5.624.8898
6733.25-50.62-20.624.88541
67a29.75-43.12-20.623.73
68-40.25-61.88-16.884.87295
69-50.75-50.6220.624.8798
7019.2535.6228.124.8749
7133.2531.88-9.384.8698
72-40.25-20.62-31.884.8049
73-47.25-54.38-9.384.80344
7419.25-31.8816.884.8049
75-15.75-50.62-1.884.7949
7622.75-16.88-9.384.7798
77-15.75-1.88-69.384.7649
78-26.25-54.3846.884.7698
79-12.25-58.12-16.884.7549
80-29.75-80.62-24.384.7249
8140.2531.8813.124.7249
82-50.7516.88-1.884.7249
83-47.25-28.1213.124.7198
8422.75-35.6254.384.70295
85-15.7516.8843.124.70147
86-22.751.88-1.884.7049
878.75-16.8846.884.7049
88-1.75-46.881.884.6998
8936.7528.12-35.624.6849
90-40.25-28.12-20.624.6849
91-15.75-31.88-61.884.6849
92-12.25-58.12-46.884.6749
93-5.25-13.12-69.384.6549
9419.25-1.8828.124.6549
9536.75-61.88-5.624.6498
96-29.7513.12-13.124.64295
96a-26.255.62-13.123.88
97-29.75-58.12-9.384.6349
98-1.75-9.38-20.624.6349
99-50.759.389.384.6249
100-40.25-65.62-5.624.6298
101-1.75-58.12-54.384.6249
102-5.25-31.8858.124.6249
10333.25-9.38-58.124.6298
10412.25-9.3813.124.6149
10526.2528.12-20.624.61196
10650.751.8843.124.6198
10719.25-65.62-24.384.61196
1088.75-20.62-13.124.60147
109-15.759.38-20.624.6098
110-47.25-28.125.624.5949
111-15.75-39.38-50.624.5949
112-15.75-16.8824.384.5998
113-36.7558.1235.624.5749
11415.75-24.38-35.624.55344
115-47.25-24.38-16.884.55147
116-33.25-13.12-13.124.55344
11719.25-39.38-13.124.5449
118-26.2513.1246.884.5449
11919.25-35.6269.384.5349
12012.2543.12-16.884.5249
121-1.75-54.38-9.384.5298
122-47.25-28.1243.124.5249
123-47.2524.3820.624.51196
1245.25-73.1216.884.51344
124a-1.75-65.6216.884.21
125-15.75-9.3828.124.51344
12612.25-80.6213.124.51147
127-12.25-13.12-46.884.5098
12812.2520.6235.624.5049
129-36.7543.1224.384.4998
1301.7513.129.384.4849
131-1.75-46.88-24.384.48147
132-47.2535.6216.884.48196
133-1.75-9.38-46.884.47196
134-1.75-50.62-1.884.4649
13522.7531.889.384.4549
136-29.75-80.62-9.384.4598
13715.75-1.88-16.884.45196
138-40.25-46.881.884.44147
13940.255.62-24.384.4449
14047.25-54.38-16.884.4449
141-57.755.6213.124.4398
14250.75-5.625.624.4349
143-50.75-5.62-5.624.4249
14468.25-1.88-9.384.42196
144a68.25-13.12-9.384.41
14533.2524.3839.384.4249
146-57.75-9.389.384.42344
146a-61.25-1.889.384.25
147-36.7520.6235.624.42295
14854.25-24.38-5.624.42344
149-43.7543.12-28.124.41147
150-1.75-1.881.884.41246
15140.2535.62-1.884.4149
152-61.25-20.6213.124.4149
15319.2516.8828.124.4049
15440.25-35.62-43.124.4049
155-50.75-16.8824.384.3949
15615.759.3843.124.3998
157-22.7516.885.624.3998
158-1.7558.1213.124.3949
1598.7516.88-20.624.3849
160-43.7524.38-1.884.38196
161-50.75-20.629.384.3898
162-8.75-46.88-31.884.3749
163-15.7513.1250.624.36147
164-8.759.3824.384.36246
165-40.255.62-28.124.36147
16629.75-24.38-16.884.3649
16750.7543.12-5.624.3649
168-47.2516.885.624.3598
169-47.2520.62-13.124.3549
17040.259.38-20.624.3598
171-22.75-54.38-61.884.35147
172-15.7524.38-9.384.3449
17336.75-73.125.624.3498
174-36.7528.1231.884.34246
17512.2550.62-1.884.3498
176-22.75-9.3813.124.3449
177-47.25-58.1213.124.3398
17822.7546.88-16.884.3349
179-15.75-1.8816.884.3349
180-5.25-24.38-20.624.33196
18119.25-69.38-13.124.3298
18233.25-24.38-13.124.3249
183-15.75-54.3843.124.3249
1845.25-35.62-58.124.3198
185-22.75-69.38-13.124.31196
18636.75-31.88-9.384.31295
1871.75-76.8835.624.3149
18836.75-54.38-20.624.3149
1895.25-88.12-1.884.3149
190-1.75-54.38-28.124.3098
191-1.7513.12-20.624.3098
19222.7516.885.624.29147
1931.75-5.62-13.124.2949
19422.75-28.1269.384.2998
195-15.75-73.12-13.124.2998
1961.75-5.62-54.384.2949
19736.7543.12-28.124.2849
198-22.75-76.88-16.884.2849
19954.25-20.6239.384.2849
200-15.75-20.62-58.124.2798
20122.759.3816.884.26246
20219.25-9.3820.624.2649
203-50.759.38-16.884.26246
204-5.25-46.88-16.884.26738
204a12.25-39.38-13.123.93
20515.7550.6258.124.2549
206-33.2513.1213.124.25196
207-19.25-20.62-35.624.2498
20833.25-50.62-28.124.2449
209-43.7516.8858.124.2449
210-1.75-39.381.884.23246
211-19.2561.885.624.2349
21215.75-1.88-1.884.2349
21347.25-54.38-1.884.23147
214-1.751.8813.124.2349
2155.25-58.12-54.384.2349
21612.2524.3861.884.2198
21754.25-9.3820.624.21196
21829.75-28.12-24.384.2149
219-1.75-24.389.384.2149
2208.75-50.62-20.624.2198
221-47.25-65.621.884.20196
22219.25-9.385.624.2049
22357.7535.6228.124.2098
22419.2565.629.384.1949
225-22.7531.88-24.384.1998
226-57.75-31.88-5.624.1949
2271.75-1.8831.884.1998
228-50.7539.389.384.1949
2295.25-43.12-9.384.1949
230-8.7584.3820.624.18147
231-5.2531.88-20.624.18147
23236.755.6235.624.18147
233-54.251.8813.124.1849
234-22.75-50.6254.384.1749
23512.251.8828.124.16147
236-47.25-28.1228.124.1649
23719.2516.8813.124.1698
238-36.7543.121.884.16147
239-54.25-20.62-24.384.1649
240-12.2554.38-9.384.1698
241-15.75-76.8820.624.1549
24212.255.6243.124.1549
243-26.251.8843.124.1598
244-19.25-76.88-28.124.15147
24533.255.6228.124.1449
24640.25-58.125.624.1498
247-8.755.62-24.384.1449
24815.75-35.6231.884.1498
249-50.7516.88-13.124.14147
250-1.75-9.38-5.624.1349
25112.25-65.62-13.124.13196
2528.7520.62-24.384.1349
253-26.2550.625.624.12147
25412.25-9.385.624.1249
25515.75-35.6273.124.12196
256-33.25-69.3839.384.1249
25719.25-1.8843.124.1198
25815.75-88.125.624.1198
25936.7550.621.884.1198
260-8.75-46.88-24.384.1149
26112.2561.885.624.1149
262-22.75-1.88-20.624.10393
263-33.25-31.88-65.624.1098
264-47.2546.8820.624.1049
26519.25-13.12-28.124.0998
26626.25-61.8831.884.0949
2678.7576.8835.624.08246
268-47.25-43.129.384.08147
269-19.25-50.6216.884.0849
27050.75-54.38-9.384.0849
27140.25-43.12-28.124.0849
27222.75-69.381.884.08147
273-29.7520.62-24.384.0749
27415.75-73.12-31.884.0749
27529.75-31.8839.384.07246
276-26.25-73.12-35.624.0798
277-15.7520.62-43.124.0798
27840.25-20.6220.624.0649
279-15.75-46.88-5.624.0698
280-50.7513.12-5.624.0649
28136.75-39.38-69.384.0549
28212.25-46.88-46.884.0549
283-26.25-28.12-31.884.0449
28419.2513.12-1.884.0498
285-36.7516.8850.624.04147
2868.7513.1250.624.0398
28726.251.8813.124.0298
2885.25-80.62-1.884.0149
28926.25-5.62-1.884.0149
290-54.25-20.62-9.384.0149
291-43.75-65.6224.384.0149
29219.2528.1231.884.0149
29343.75-69.38-1.884.0198
29429.75-58.12-46.884.0049
2955.25-28.12-9.384.0049
29619.25-24.3816.884.0049
297-57.75-46.88-1.883.99246
297a-54.25-39.38-1.883.69
29822.75-61.88-46.883.99147
29912.2524.38-39.383.99147
30022.755.62-1.883.9949
30129.75-43.12-58.123.9949
30219.25-84.38-20.623.9849
303-33.2539.3854.383.9849
304-8.75-39.38-31.883.9849
305-40.25-58.129.383.9798
306-36.75-31.88-46.883.9749
3071.7524.3831.883.9749
30840.25-31.8854.383.9798
3098.75-43.12-35.623.9698
310-29.7524.3813.123.9698
3115.25-61.8854.383.96196
31226.25-20.62-65.623.9698
31333.2543.1224.383.9549
314-15.75-5.6261.883.95147
315-64.75-13.12-24.383.9549
316-40.25-16.88-50.623.9449
3171.75-20.62-35.623.9449
31812.2569.385.623.9449
31947.2520.625.623.9449
32026.25-80.62-9.383.9449
32143.75-39.38-1.883.93196
322-33.251.88-16.883.92147
323-19.251.8858.123.9249
324-47.25-13.1235.623.9249
325-12.2546.8828.123.9249
326-5.25-84.38-20.623.9149
327-47.25-39.3816.883.9149
328-8.7539.385.623.9149
329-15.75-16.88-43.123.9149
33064.75-43.125.623.9149
331-19.25-13.1261.883.9149
33261.25-31.8839.383.9149
3338.7546.88-5.623.9149
334-12.25-28.12-50.623.91196
335-29.75-1.88-24.383.9198
33636.75-73.12-9.383.9049
3378.75-24.389.383.9049
33819.2554.381.883.9049
33922.7513.1235.623.90196
3401.75-58.129.383.9049
34154.251.8835.623.9049
34215.75-20.6273.123.9098
34340.25-28.12-1.883.9049
344-40.2516.8824.383.9098
34526.2524.3813.123.8998
346-29.75-65.62-20.623.8949
347-54.2513.1220.623.89147
34833.25-28.1265.623.8949
34926.25-9.3813.123.89147
35019.2535.621.883.8998
351-47.25-13.12-54.383.8998
35212.25-9.3831.883.8898
35347.2513.12-20.623.8849
35457.75-39.385.623.8849
355-54.25-28.12-16.883.8849
35619.25-13.1228.123.8849
35715.7588.129.383.8898
3585.25-28.1273.123.8749
359-50.7528.1246.883.8749
3608.75-73.1235.623.8649
361-15.75-50.62-31.883.86196
362-33.2535.62-24.383.8698
36329.75-31.88-31.883.8649
36412.25-1.88-69.383.8698
365-22.7513.12-24.383.8649
366-19.2565.6239.383.8549
367-61.25-16.889.383.8549
36812.25-54.38-54.383.8549
369-47.25-58.12-28.123.8449
370-33.25-16.88-5.623.8449
371-15.75-1.88-31.883.8449
372-12.25-20.62-61.883.8449
373-12.2520.6273.123.84196
373a-15.7513.1273.123.74
374-12.25-20.62-46.883.8349
375-54.25-24.38-39.383.8398
37633.2543.1235.623.8349
37750.75-13.125.623.8349
378-1.75-43.12-31.883.8398
37919.25-58.12-13.123.8249
380-15.75-73.1239.383.8298
3811.75-31.881.883.8249
382-15.755.6265.623.8298
383-1.75-16.88-28.123.8249
384-12.2554.3854.383.8198
38557.75-20.6228.123.8049
386-5.2546.8854.383.8098
387-8.75-54.38-31.883.8049
38819.25-9.38-5.623.8049
389-33.25-35.62-9.383.8098
39015.75-20.62-20.623.7949
391-15.75-43.12-43.123.7998
39233.25-9.38-9.383.7949
393-36.75-69.385.623.7949
39426.2520.62-24.383.7998
39543.7531.885.623.7849
39647.2516.88-39.383.7898
397-26.25-31.8816.883.7849
39826.25-20.6220.623.7749
39919.25-16.8816.883.7649
4001.7565.62-16.883.7698
401-57.75-1.88-13.123.7698
40212.25-9.3850.623.7549
40326.25-20.6265.623.7549
40436.75-54.38-28.123.7549
405-1.75-28.1258.123.7549
406-1.7576.885.623.7598
4071.75-35.62-61.883.7598
40822.7546.8813.123.7549
409-26.25-35.62-9.383.7549
410-57.75-31.8824.383.7598
41122.75-54.3861.883.7449
412-47.25-1.88-20.623.7349
413-33.2565.6220.623.7398
41440.25-35.6250.623.7349
415-54.2546.889.383.7398
4165.25-61.88-46.883.7249
417-1.75-43.12-9.383.7249
41826.25-65.6246.883.7249
41929.7516.8835.623.7249
42050.7550.62-1.883.7249
42122.75-76.88-35.623.7298
422-19.25-61.8820.623.7249
42329.75-16.88-61.883.7249
42447.2513.125.623.7298
42519.25-84.3824.383.7249
42643.75-5.62-13.123.7149
427-47.251.88-28.123.7149
42826.25-80.621.883.7149
42940.2528.12-39.383.7149
43022.75-35.62-20.623.71196
431-1.75-28.1220.623.7198
4321.759.38-16.883.7149
43319.25-50.62-73.123.7049
43419.25-31.88-16.883.7049
435-1.75-46.88-65.623.7049
43629.75-50.6254.383.70147
437-22.75-80.621.883.7049
43826.2513.129.383.7049
43915.75-46.8820.623.7049
44029.7565.6243.123.7049
44150.75-50.629.383.6949
44215.75-73.12-20.623.6949
443-22.75-5.62-1.883.6949
444-26.25-35.6254.383.6949
44512.25-35.629.383.6949
446-54.25-9.3820.623.6949
447-54.25-20.62-50.623.6949
44840.25-9.38-31.883.6949
449-36.7561.8816.883.6998
45015.75-16.88-58.123.6949
451-47.25-61.8820.623.6949
45261.251.8824.383.6849
45333.25-43.12-24.383.6849
454-1.75-16.8824.383.6849
455-29.75-43.1258.123.6898
456-19.25-65.62-20.623.6849
457-26.25-76.8835.623.6849
458-33.25-35.6246.883.6849
45915.75-16.885.623.6849
46043.7524.38-5.623.6849
461-47.2516.88-24.383.6849
46233.25-35.62-5.623.6849
463-8.75-65.62-43.123.6749
4641.7516.88-39.383.6798
4651.75-58.12-13.123.6649
46626.251.88-13.123.6649
46719.25-9.3835.623.6649
46836.75-24.38-31.883.6649
469-40.2535.6231.883.6698
47036.7520.6231.883.6549
471-29.7535.62-1.883.6549
472-40.25-69.3831.883.6549
473-43.7550.6228.123.6549
47436.7550.62-16.883.6549
47522.75-24.381.883.6549
47668.25-31.889.383.65147
4775.255.62-69.383.6549
47833.25-13.1265.623.6549
479-15.75-43.121.883.6449
480-12.25-9.38-24.383.6449
48147.2543.129.383.6449
482-47.2546.8828.123.6449
48333.2543.12-16.883.6449
48433.25-24.38-58.123.6449
485-29.75-46.88-13.123.6449
48647.2531.88-24.383.6449
48733.2550.6224.383.6398
488-29.7535.62-9.383.6349
48950.75-43.129.383.6349
49026.25-58.12-13.123.6398
49122.75-5.6220.623.6349
492-47.2543.129.383.6349
493-68.25-24.381.883.6398
494-29.75-1.88-1.883.6349
49547.2516.8839.383.6349
496-1.7520.62-16.883.6398
49719.2543.12-5.623.6249
498-54.25-35.62-5.623.6249
49929.75-16.8858.123.6249
500-54.25-9.38-5.623.6198
501-1.75-9.38-28.123.6149
50229.75-1.88-20.623.6149
503-36.75-13.129.383.6149
50436.7535.6216.883.61196
50536.751.8820.623.6149
50633.25-39.38-58.123.6149
50722.75-16.8843.123.6049
508-8.75-9.38-20.623.6049
50919.2520.6220.623.6049
51019.25-28.12-24.383.5949
511-12.2516.8820.623.5949
512-1.75-9.3831.883.5949
513-29.7516.88-5.623.5949
514-33.25-43.12-28.123.5998
51550.75-16.8828.123.5849
516-36.7516.881.883.5849
5171.75-84.38-16.883.5849
518-47.2520.6246.883.5849
51926.25-16.88-58.123.5849
520-33.2546.8835.623.5849
52115.751.8835.623.5849
522-5.25-43.1269.383.5749
5238.7528.12-24.383.5749
52415.7520.6243.123.5749
525-29.75-20.62-69.383.5749
52626.255.625.623.5698
5275.25-9.38-20.623.5649
528-12.2588.1216.883.5649
52915.7516.88-16.883.5649
530-12.25-39.38-5.623.5649
53119.259.3820.623.5649
5321.75-16.88-24.383.5649
533-19.2524.3831.883.5649
534-5.25-54.38-54.383.5649
535-47.259.38-9.383.5649
536-33.25-1.8813.123.5549
537-50.755.62-9.383.5549
53822.7573.125.623.5598
539-15.75-5.621.883.5598
540-5.25-13.12-61.883.5549
54136.75-31.8813.123.5549
542-12.255.6235.623.54147
543-19.2543.12-1.883.5449
54447.2528.12-39.383.5449
545-22.75-20.62-31.883.5449
546-50.75-58.121.883.5449
54719.25-46.8831.883.5449
548-26.25-61.8835.623.5398
54947.25-35.6216.883.5349
55015.75-5.6228.123.5349
55112.25-1.8824.383.5349
55261.25-35.6235.623.5249
5535.25-16.88-20.623.5249
554-15.75-69.3828.123.5249
555-5.2543.12-16.883.5249
55615.75-13.12-73.123.5149
557-36.75-16.88-46.883.5149
55843.759.38-39.383.5149
5595.25-73.12-16.883.5149
560-36.7561.889.383.5149
561-57.75-24.385.623.5149
562-8.75-54.389.383.5098
56312.25-84.38-5.623.5049
56433.2550.6250.623.5049
565-29.75-80.6220.623.5049
5661.75-65.62-43.123.5049
567-5.25-20.621.883.5049
56812.25-9.38-24.383.5049
56940.25-31.88-58.123.5098
570-1.7580.621.883.4949
571-47.25-24.38-5.623.4949
57254.25-16.88-1.883.4998
57347.255.6231.883.4949
574-1.759.389.383.4998
575-12.25-76.88-9.383.4949
57668.25-28.1216.883.4949
577-8.7543.1224.383.4949
5788.75-76.889.383.4949
579-29.7524.385.623.4949
58022.7524.3846.883.4949
58112.25-9.3843.123.4949
58222.75-1.885.623.4849
58329.75-39.38-54.383.4849
584-33.25-58.12-1.883.4849
585-33.25-43.12-61.883.4849
586-43.7513.1216.883.4898
587-19.25-84.381.883.4849
588-15.75-50.6239.383.4849
58940.25-35.6239.383.4898
59012.25-65.621.883.4849
591-33.251.8831.883.4849
59233.255.6250.623.4749
59322.75-9.3843.123.4749
594-1.75-1.88-5.623.4749
595-15.75-31.88-16.883.4749
59626.2531.8843.123.4649
59740.25-5.6246.883.4649
598-19.2513.1228.123.4649
59919.25-31.88-54.383.4649
60047.25-35.62-9.383.4649
60140.25-39.38-13.123.4549
602-5.251.88-58.123.4549
60312.25-35.62-16.883.4549
604-19.25-50.62-46.883.4549
60512.2516.88-50.623.4549
6061.75-1.88-20.623.4549
607-12.25-16.88-65.623.4549
608-19.25-43.1231.883.4549
609-1.75-35.62-13.123.4549
610-19.25-61.88-13.123.4449
611-1.75-69.38-13.123.4449
612-8.7554.3843.123.4449
61322.7539.3820.623.4449
614-29.759.3861.883.4449
615-40.25-50.6228.123.4349
6161.7584.381.883.4349
61757.75-13.1216.883.4349
618-15.75-16.88-28.123.4398
61954.25-16.8835.623.4398
620-1.7524.38-39.383.4349
621-33.2573.1220.623.4349
62254.25-5.6213.123.4349
62326.25-39.3835.623.4349
624-36.7535.62-13.123.4349
625-50.75-9.38-13.123.4249
62650.7539.38-9.383.4249
62740.2513.12-46.883.4249
628-12.25-13.12-73.123.4298
629-12.25-5.62-20.623.4249
63043.75-9.3846.883.4249
63147.25-20.6220.623.4249
63233.25-20.62-9.383.4249
633-50.75-1.8816.883.4198
63426.2516.88-20.623.4149
63522.7520.6216.883.4149
63612.25-35.6265.623.4149
63715.7528.12-5.623.4149
638-50.7513.12-39.383.4149
639-54.2524.3824.383.4149
640-64.75-35.62-1.883.4149
641-1.75-9.3869.383.4149
642-40.25-5.6235.623.4049
643-19.25-9.38-65.623.4049
644-29.75-1.88-46.883.4049
64554.251.889.383.4049
64629.7535.6239.383.4049
64719.25-5.6213.123.3949
6485.25-61.88-35.623.3949
649-22.7543.12-28.123.3949
65019.25-61.88-20.623.3949
65112.25-35.62-61.883.3949
652-29.75-24.38-9.383.3849
65347.2539.3813.123.3898
654-57.751.8820.623.3849
655-1.755.62-39.383.3849
656-40.2539.3843.123.3798
657-36.75-69.3813.123.3749
65812.2520.62-46.883.3749
659-19.25-16.889.383.3749
66033.25-28.1258.123.3749
66150.75-20.62-43.123.3749
662-5.251.881.883.3749
66340.25-69.389.383.3798
6648.75-65.6220.623.3649
665-12.25-20.62-13.123.3649
666-5.25-61.8820.623.3649
667-26.25-31.88-58.123.3649
66815.7535.625.623.3649
66912.25-69.385.623.3649
6701.7565.62-9.383.3649
671-12.25-39.385.623.3649
672-43.75-16.8813.123.3649
67347.25-54.3813.123.3649
67412.25-50.6239.383.3649
67522.75-73.12-5.623.3549
676-36.75-35.6239.383.3549
6771.751.88-16.883.3549
67822.75-50.6235.623.3549
679-22.7520.62-1.883.3549
680-50.7539.3816.883.3549
681-36.759.3854.383.3549
682-8.7539.38-28.123.3549
6831.75-69.3846.883.3549
684-1.75-16.88-58.123.3549
6855.251.8813.123.3549
686-47.25-9.3843.123.3549
687-1.75-5.62-73.123.3549
68822.75-13.1273.123.3549
689-15.7535.625.623.3449
69036.7524.38-13.123.3449
69154.25-28.1224.383.3449
69254.25-28.1231.883.3449
693-5.25-31.881.883.3449
694-22.7520.62-46.883.3449
695-5.25-61.8854.383.3449
69640.25-76.88-9.383.3449
697-26.25-24.38-5.623.3449
698-36.75-46.889.383.3449
699-22.751.8828.123.3449
7001.7528.12-5.623.3449
701-47.25-50.625.623.3349
7025.2546.8813.123.3349
70322.7554.385.623.3349
7045.25-16.8869.383.3349
705-22.7524.3820.623.3349
70654.251.88-31.883.3349
70719.25-69.3820.623.3349
70826.25-80.62-28.123.3349
709-50.75-35.62-54.383.3349
71015.75-31.88-50.623.3349
71129.75-9.389.383.3349
712-40.25-46.88-5.623.3249
7135.25-50.62-5.623.3298
714-8.75-13.125.623.3249
71512.25-58.1246.883.3249
716-19.25-65.629.383.3249
71726.25-54.3831.883.3249
71826.25-43.125.623.3249
71929.75-1.88-54.383.3249
720-36.75-31.8820.623.3249
72115.7546.8846.883.3249
72229.7543.1216.883.3149
72315.75-16.8854.383.3149
72450.75-61.88-13.123.3149
725-15.75-46.88-24.383.3149
72633.25-76.88-28.123.3149
727-50.75-16.88-9.383.3149
728-40.25-65.62-31.883.3149
72933.25-35.62-35.623.3149
73033.2531.88-28.123.3149
73140.25-9.38-13.123.3149
732-29.75-46.88-28.123.3049
73336.75-46.889.383.3049
734-15.75-69.38-43.123.3049
73547.255.62-1.883.3049
736-68.25-24.3813.123.3049
737-22.75-28.12-65.623.3049
738-26.25-35.62-43.123.3049
73922.759.3846.883.3049
7408.7513.1216.883.3049
74140.25-31.88-69.383.3049
7428.7524.3839.383.3049
743-12.25-54.38-9.383.2949
744-26.25-5.6265.623.2949
745-1.75-76.881.883.2949
746-64.7520.625.623.2949

house

Stat map plot for the contrast: house
Contrast Plot Plot of the contrast: house.

Cluster Table
Height controlfpr
α0.0
Threshold (computed)3.29
Cluster size threshold (voxels)0
Minimum distance (mm)8.0

Cluster IDXYZPeak StatCluster Size (mm3)
122.7520.629.385.62689
1a22.7524.3816.884.40
2-22.7524.3813.125.30147
347.25-54.38-16.885.3098
422.7513.1220.625.2698
5-22.75-39.38-1.885.15295
622.75-5.6220.625.0149
7-15.7524.389.384.77590
7a-15.7528.1216.884.25
8-29.7528.125.624.6949
912.2524.3820.624.67147
1033.2528.1228.124.5998
11-22.7516.885.624.5498
12-22.755.6224.384.47295
1333.25-43.12-35.624.45344
13a29.75-50.62-39.383.75
14-50.759.38-28.124.4049
15-33.25-58.1235.624.3849
1636.75-54.38-20.624.3549
17-26.2539.3846.884.33147
18-40.25-58.1228.124.3198
1919.25-13.1224.384.3098
201.7513.12-16.884.2949
2122.75-31.881.884.2949
22-15.75-35.62-1.884.24147
2319.255.6243.124.2398
248.75-24.3824.384.2349
25-54.25-20.62-9.384.2149
26-12.25-16.88-20.624.2149
2726.25-61.8831.884.2049
28-29.7516.889.384.1649
2922.75-43.12-31.884.1549
3015.75-54.385.624.1449
31-22.7520.6220.624.14147
321.7531.88-13.124.1349
3326.255.629.384.1249
34-8.7535.6243.124.1249
3526.25-24.38-69.384.1149
36-15.75-46.8820.624.0998
378.75-16.8831.884.0749
38-12.25-28.12-76.884.0749
3926.259.38-31.884.0749
4033.255.62-39.384.0749
4126.2513.1213.124.0698
4215.75-39.3813.124.0449
438.75-9.3831.884.0398
4450.7550.62-1.884.0249
45-12.25-43.12-50.624.0149
4626.25-1.8813.123.9749
4722.75-43.129.383.9749
48-15.7520.6220.623.9649
49-33.25-24.3835.623.9549
5043.75-1.8820.623.9498
51-12.251.88-61.883.9098
525.2531.8850.623.8949
53-26.2513.1216.883.8798
54-15.7520.621.883.8649
55-15.75-50.6224.383.8549
565.25-20.62-13.123.8449
57-29.75-31.8835.623.8449
581.75-46.88-5.623.8249
595.25-43.12-1.883.8198
60-12.25-39.3846.883.7949
6140.2531.88-24.383.7949
62-22.75-9.38-65.623.7849
63-40.25-69.3820.623.7849
6422.75-16.8816.883.7749
65-26.25-50.62-46.883.7649
66-8.755.6228.123.7698
67-12.2513.121.883.7498
68-33.25-73.12-31.883.7249
6926.259.38-24.383.7249
70-12.25-43.12-16.883.7149
71-15.75-20.62-28.123.7049
7229.751.8813.123.7049
7322.75-39.3846.883.6949
7450.75-31.88-50.623.6949
7519.25-76.88-16.883.6998
7633.2554.3828.123.6849
77-15.75-31.88-50.623.6849
7815.75-28.1224.383.6849
79-22.75-24.3846.883.6749
8022.7516.885.623.6649
81-26.251.8813.123.6649
8236.75-13.12-31.883.6649
83-36.7524.3813.123.6449
8412.25-31.88-73.123.6449
85-43.75-9.3839.383.6349
86-8.75-28.125.623.6349
87-15.7516.8813.123.6249
8833.25-76.88-24.383.6249
8933.259.381.883.6249
9026.25-73.1231.883.6249
9126.25-13.1254.383.6249
9250.75-43.12-1.883.6149
93-22.75-58.1224.383.6149
9440.25-13.12-43.123.6198
95-15.75-24.38-9.383.6198
96-15.7558.125.623.6149
97-43.7558.129.383.6149
98-33.259.385.623.6049
995.25-65.6254.383.6049
100-50.7531.889.383.5949
101-15.75-28.12-5.623.5949
10236.75-50.62-24.383.58147
103-33.2561.8839.383.5849
10440.25-39.3813.123.5749
10536.75-61.88-13.123.5749
10657.75-54.381.883.5749
107-15.75-5.62-13.123.5798
108-15.7531.885.623.5649
1098.75-61.88-50.623.5649
11022.75-13.1220.623.5649
111-1.75-61.88-39.383.5549
112-33.2513.12-1.883.5549
113-54.25-13.12-1.883.5549
11422.75-9.3813.123.5449
115-47.25-76.889.383.5349
11633.2528.12-46.883.5349
117-40.25-1.8824.383.5349
118-36.75-65.62-16.883.5349
119-40.25-46.8839.383.5249
12033.2513.12-5.623.5249
121-22.75-16.8824.383.5249
12222.751.8820.623.5249
123-26.2520.62-1.883.5149
124-29.75-9.38-31.883.5149
12529.75-54.38-24.383.5149
12622.75-76.8820.623.5049
127-15.75-61.8843.123.4949
128-40.2550.621.883.4849
129-1.7539.38-20.623.4898
1308.7543.12-5.623.4849
13122.75-73.12-13.123.4749
132-8.75-46.88-31.883.4749
133-8.75-43.12-9.383.4749
13415.75-28.12-5.623.4749
13522.75-65.6220.623.4649
13615.75-50.629.383.4649
137-19.2561.8820.623.4649
13819.25-35.62-28.123.4649
139-64.75-24.38-20.623.4549
140-40.25-28.12-24.383.4449
141-36.75-39.38-46.883.4349
14212.25-5.62-5.623.4349
143-8.75-24.381.883.4249
144-19.2531.8820.623.4249
14561.25-1.8813.123.4249
14615.75-1.8869.383.4249
14722.75-43.1231.883.4249
1488.7520.6220.623.4149
14926.25-16.88-9.383.4049
15019.2524.385.623.3949
151-12.259.385.623.3949
15215.751.8858.123.3949
15343.7520.6216.883.3949
15429.75-43.12-20.623.3949
15557.75-16.8816.883.3849
156-36.75-61.8835.623.3849
15740.25-50.62-58.123.3898
158-12.2543.1246.883.3849
15929.75-16.8846.883.3849
160-15.7531.8824.383.3749
161-36.75-69.3835.623.3749
162-26.2516.8850.623.3749
163-29.75-13.12-20.623.3749
164-40.2524.3835.623.3749
165-26.25-54.3843.123.3649
16612.25-13.1254.383.3549
167-26.25-31.88-69.383.3549
16819.25-35.621.883.3449
16922.755.6224.383.3449
170-15.75-65.6246.883.3398
17143.7535.6246.883.3349
172-57.7520.6213.123.3349
173-36.75-50.62-16.883.3349
174-12.25-58.12-46.883.3349
17550.75-9.3820.623.3249
17619.25-58.1220.623.3249
177-22.75-13.1246.883.3249
1788.75-58.12-24.383.3249
17926.25-13.1213.123.3149
180-57.7516.885.623.3149
18126.25-20.6224.383.3149
18229.75-46.88-24.383.3149
1838.75-80.62-5.623.3149
184-36.75-46.88-46.883.3149
18515.75-1.88-16.883.3149
18615.7524.38-13.123.3049
18733.25-28.12-13.123.3049
188-15.75-61.8824.383.3049
1895.25-35.62-28.123.3049
190-26.25-20.62-13.123.3049
19154.259.38-31.883.2949
192-5.25-5.6250.623.2949

chair

Stat map plot for the contrast: chair
Contrast Plot Plot of the contrast: chair.

Cluster Table
Height controlfpr
α0.0
Threshold (computed)3.29
Cluster size threshold (voxels)0
Minimum distance (mm)8.0

Cluster IDXYZPeak StatCluster Size (mm3)
140.25-46.8813.124.87147
212.2535.62-5.624.6998
3-50.7539.3816.884.3949
4-36.75-76.881.884.3549
5-50.75-39.38-1.884.08147
6-15.75-1.88-16.884.0249
7-54.25-43.1246.884.0249
8-29.7520.6246.883.9949
926.25-46.88-35.623.9849
1033.2543.12-16.883.9549
1133.25-58.12-1.883.9349
12-5.2543.1250.623.9249
1322.7524.3816.883.8849
1433.25-58.12-16.883.8349
1512.255.62-24.383.8249
16-36.75-61.8843.123.8249
17-22.75-43.12-31.883.8198
18-22.7524.3813.123.7449
19-22.75-31.88-69.383.7449
2012.2528.12-16.883.7249
218.75-35.62-35.623.7149
22-57.75-9.38-1.883.7049
23-57.7513.121.883.7098
2412.2516.88-20.623.6849
2519.2520.6220.623.6849
2626.2516.8816.883.6749
2733.2513.12-1.883.6749
2836.75-24.3820.623.6349
29-15.7520.6213.123.6249
30-36.75-46.8850.623.6149
31-1.755.6231.883.6149
32-22.759.3824.383.5749
3329.75-43.12-35.623.5649
34-22.751.885.623.5449
35-29.75-43.12-58.123.5349
3622.7513.1220.623.5049
3754.2520.625.623.4849
3833.25-20.62-58.123.4749
39-22.7550.629.383.4649
4043.75-28.12-13.123.4649
4136.75-1.8828.123.4449
4233.259.38-13.123.4149
43-15.75-35.62-24.383.4198
44-22.75-9.3820.623.3949
4529.759.38-16.883.3949
4626.25-69.3831.883.3849
4712.259.38-1.883.3749
481.7528.12-35.623.3749
4936.75-28.12-9.383.3649
50-22.75-39.38-28.123.3549
51-15.75-39.38-54.383.3249
5236.7520.62-43.123.3249
5329.7513.12-43.123.3149
5429.75-20.62-5.623.3049

scrambledpix

Stat map plot for the contrast: scrambledpix
Contrast Plot Plot of the contrast: scrambledpix.

Cluster Table
Height controlfpr
α0.0
Threshold (computed)3.29
Cluster size threshold (voxels)0
Minimum distance (mm)8.0

Cluster IDXYZPeak StatCluster Size (mm3)
11.7524.38-13.125.5449
2-22.75-46.8843.124.9598
3-15.7561.88-9.384.82147
4-29.75-61.88-31.884.7949
55.2543.12-28.124.2149
6-22.75-9.3820.624.1649
750.7516.88-28.124.13147
840.25-16.88-39.383.9749
9-1.755.6231.883.8949
10-64.75-31.8839.383.8849
11-22.75-54.38-9.383.8649
12-15.75-43.12-16.883.7449
13-1.75-35.625.623.6349
1422.75-24.3846.883.5749
15-40.25-16.88-54.383.5649
1622.7546.88-5.623.5649
17-26.25-69.3839.383.5649
18-1.75-46.88-9.383.5449
1950.755.62-35.623.5049
2019.251.889.383.4649
2133.25-20.6243.123.4249
22-19.25-73.1239.383.4049
23-22.75-9.38-65.623.3949
24-29.75-65.6220.623.3949
25-15.75-61.88-46.883.3349
261.7513.1231.883.3149
2733.2535.62-28.123.3149
2826.25-20.6243.123.3149
2954.25-9.3816.883.3049
3019.2543.1213.123.3049
3126.25-24.38-69.383.3049

face

Stat map plot for the contrast: face
Contrast Plot Plot of the contrast: face.

Cluster Table
Height controlfpr
α0.0
Threshold (computed)3.29
Cluster size threshold (voxels)0
Minimum distance (mm)8.0

Cluster IDXYZPeak StatCluster Size (mm3)
1-50.75-50.6213.125.22196
1a-47.25-58.1213.123.83
2-47.25-43.12-35.624.9149
31.7524.38-13.124.8098
4-47.25-39.3816.884.7698
568.25-9.38-9.384.71147
6-33.2550.6216.884.70196
7-12.25-58.12-16.884.5998
8-57.75-16.881.884.46147
9-15.7513.1273.124.42196
10-36.7531.8816.884.3998
11-40.2546.8813.124.3098
12-22.7539.3813.124.2749
131.75-43.12-1.884.2349
1422.75-50.62-24.384.1949
1529.75-46.8835.624.1549
16-47.25-50.6220.624.1249
1733.25-61.88-13.124.1049
18-43.75-31.8835.624.0798
19-26.2524.38-13.124.06147
20-1.75-39.385.624.0598
2140.25-39.38-24.384.0549
2229.75-54.3846.884.0349
23-47.2524.3820.623.9949
24-47.25-54.38-9.383.9849
255.2520.6265.623.9649
265.25-58.12-24.383.9598
27-8.75-46.88-31.883.9449
28-36.75-31.88-46.883.9449
29-19.25-73.1239.383.9198
30-40.25-43.12-16.883.9149
31-1.7528.1261.883.8998
32-36.7531.8835.623.86393
32a-29.7528.1239.383.52
33-8.7513.1265.623.8549
34-15.75-13.1224.383.8298
35-36.75-43.1239.383.78147
36-8.75-28.1261.883.7849
3743.7535.6235.623.7898
38-47.25-61.88-5.623.7849
3940.2528.1239.383.7798
4033.25-46.88-39.383.7798
415.25-24.38-20.623.7649
4240.2543.1216.883.7449
43-47.25-28.1228.123.7498
44-57.7531.8831.883.7349
45-1.75-58.12-16.883.6949
46-43.75-39.38-9.383.6898
4719.25-46.88-20.623.6898
48-12.25-39.3858.123.6649
4940.25-43.12-9.383.6549
5012.2528.1261.883.6549
51-26.25-43.12-43.123.6549
52-47.25-16.88-35.623.6349
53-22.75-46.88-50.623.6249
54-26.25-88.12-9.383.6298
55-1.75-46.88-9.383.6249
56-57.75-9.38-1.883.6149
57-40.2550.6220.623.6149
5833.25-58.12-16.883.6049
59-54.25-43.1220.623.6049
60-50.75-35.6243.123.6049
6119.25-16.8839.383.5949
62-12.25-76.8828.123.5949
63-47.25-46.8816.883.5949
64-19.25-61.88-9.383.5749
655.25-65.6213.123.5749
66-29.75-13.125.623.5749
67-29.7528.1213.123.5549
681.75-43.12-16.883.5249
69-29.7531.88-9.383.5249
70-33.2539.3854.383.5149
71-47.25-46.889.383.5049
7236.75-46.889.383.5049
7333.25-50.62-20.623.4949
74-47.25-46.88-31.883.4949
7522.7531.8828.123.4949
7643.75-54.389.383.4849
775.2531.88-35.623.4749
7812.25-58.12-20.623.4649
798.75-58.12-28.123.4698
80-8.75-39.38-5.623.4549
8115.75-54.38-20.623.4449
8222.75-1.8858.123.4349
8333.25-54.3843.123.4349
845.25-54.38-20.623.4349
8529.75-50.62-39.383.4149
86-40.2550.629.383.4149
878.75-1.889.383.4149
8836.7561.8828.123.4049
8929.75-46.88-43.123.4049
90-33.2531.8846.883.3949
9140.25-35.62-43.123.3649
92-47.25-9.3813.123.3649
93-50.7520.6220.623.3649
9433.2550.6220.623.3649
95-15.75-73.1216.883.3549
9629.75-46.88-31.883.3549
97-50.75-28.1235.623.3449
9815.7513.1243.123.3349
99-1.7539.38-20.623.3349
10057.75-35.6243.123.3349
10126.251.8813.123.3249
10233.25-65.62-16.883.3249
103-36.7520.6250.623.3149
104-43.75-43.1246.883.3149
105-50.75-58.12-13.123.3149
10640.25-43.125.623.3049
10726.25-43.1235.623.3049
108-29.75-50.621.883.3049
109-47.25-9.385.623.2949
11043.759.3850.623.2949
111-54.25-20.62-39.383.2949
11229.75-35.6235.623.2949

shoe

Stat map plot for the contrast: shoe
Contrast Plot Plot of the contrast: shoe.

Cluster Table
Height controlfpr
α0.0
Threshold (computed)3.29
Cluster size threshold (voxels)0
Minimum distance (mm)8.0

Cluster IDXYZPeak StatCluster Size (mm3)
122.75-9.3835.624.6698
219.2573.1220.624.1949
361.2524.3831.884.11147
419.25-20.62-28.123.9849
522.75-69.38-28.123.8249
636.7546.88-16.883.7649
726.25-46.88-24.383.6949
8-1.75-28.12-73.123.6949
926.2535.6228.123.6649
1012.255.6231.883.6449
11-54.25-65.6216.883.6449
12-47.25-16.88-24.383.6249
13-68.25-20.6224.383.6149
1433.259.3861.883.5949
1515.7516.8858.123.5749
16-12.2539.3865.623.5449
1750.75-35.62-35.623.5349
18-19.2520.6243.123.5249
1915.75-24.38-73.123.5149
20-68.25-9.389.383.5149
21-8.7520.6273.123.5149
22-8.7584.3820.623.4949
23-5.25-76.88-28.123.4849
24-29.759.3835.623.4849
2519.25-28.12-54.383.4649
26-12.251.88-69.383.3949
2740.25-54.3839.383.3849
281.75-24.38-39.383.3749
2947.25-28.12-5.623.3749
30-26.25-13.12-43.123.3549
31-12.25-46.88-43.123.3549
32-8.75-46.88-39.383.3349
3322.7561.8831.883.3349
34-8.7573.1231.883.3149

cat

Stat map plot for the contrast: cat
Contrast Plot Plot of the contrast: cat.

Cluster Table
Height controlfpr
α0.0
Threshold (computed)3.29
Cluster size threshold (voxels)0
Minimum distance (mm)8.0

Cluster IDXYZPeak StatCluster Size (mm3)
1-12.25-76.8831.884.6998
25.25-61.88-24.384.5498
3-40.25-65.6213.124.48147
4-12.25-58.12-16.884.3849
512.25-61.88-31.884.35147
643.75-5.6216.884.27196
71.7535.62-13.124.2149
8-29.7539.3854.384.1898
9-1.7550.62-9.384.12246
10-15.75-20.62-58.124.1198
1122.75-24.38-58.124.0649
1222.75-61.88-54.384.0249
1319.25-31.88-69.384.0049
1443.755.621.884.0049
155.25-24.38-73.123.9649
1636.7569.385.623.9549
1747.251.88-46.883.9149
188.75-65.62-24.383.8949
19-64.75-9.38-24.383.8749
2036.759.38-35.623.8649
2143.755.629.383.86246
225.25-80.629.383.8498
2350.7528.1224.383.7849
24-5.25-50.62-13.123.7749
25-29.7535.6250.623.7549
2636.7528.12-20.623.7449
27-12.25-73.12-31.883.7349
28-54.25-50.625.623.7398
2950.751.88-24.383.7049
3015.75-16.8846.883.6949
315.2543.1250.623.6749
32-36.75-50.62-39.383.6449
33-8.75-46.88-28.123.6349
34-40.25-46.8816.883.6349
3561.25-31.8843.123.6349
368.7516.88-16.883.6349
37-26.25-80.629.383.6098
3815.75-31.88-61.883.5749
3961.25-31.8820.623.5749
401.7528.12-35.623.5649
41-40.25-5.6250.623.5549
4236.7528.1243.123.5498
43-40.25-69.3835.623.5449
44-8.75-35.62-24.383.5449
4522.75-58.12-61.883.5049
4640.25-5.62-5.623.5049
4733.25-54.3843.123.4849
48-29.75-46.885.623.4749
4912.255.625.623.4649
50-47.25-43.1243.123.4549
51-40.25-46.8850.623.4449
5212.25-39.38-31.883.4449
535.25-31.8854.383.4349
5412.25-54.38-43.123.4149
55-43.75-1.88-28.123.4149
5615.75-50.62-39.383.4049
57-22.7565.6239.383.3898
5829.75-43.1250.623.3849
5912.25-43.121.883.3749
6036.7528.1235.623.3449
61-22.7535.6261.883.3449
6236.75-9.3850.623.3449
6329.759.38-31.883.3349
64-26.25-54.3813.123.3349
65-47.25-50.6246.883.3349
665.2520.6250.623.3349
6715.75-80.62-31.883.3149
685.25-61.88-39.383.3149
69-43.7528.12-9.383.3049
70-43.75-65.625.623.3049
71-8.75-28.12-61.883.2949
7233.25-1.8846.883.2949
7329.751.88-31.883.2949

scissors

Stat map plot for the contrast: scissors
Contrast Plot Plot of the contrast: scissors.

Cluster Table
Height controlfpr
α0.0
Threshold (computed)3.29
Cluster size threshold (voxels)0
Minimum distance (mm)8.0

Cluster IDXYZPeak StatCluster Size (mm3)
1-50.7520.62-24.386.11984
2-19.2584.3820.625.80344
3-15.7516.88-46.885.71442
4-26.2524.3828.125.64147
536.7520.62-31.885.22246
629.755.62-5.625.15147
712.25-35.62-69.385.0498
812.2513.12-43.125.03442
933.255.62-46.884.9949
101.75-28.12-61.884.9998
11-19.2561.8850.624.9849
12-1.751.88-61.884.98295
135.2524.38-46.884.96492
14-22.75-54.38-50.624.86295
1515.7576.8828.124.6749
1612.25-61.88-46.884.6749
1747.2524.38-1.884.6249
18-12.2576.8820.624.5498
19-54.25-39.38-31.884.5349
2026.25-46.881.884.5098
211.7513.12-16.884.4649
22-19.2531.88-35.624.46147
23-29.7576.8820.624.45541
2450.7531.88-31.884.4449
25-15.75-43.12-46.884.4398
26-12.259.38-58.124.3898
27-50.75-9.38-20.624.38246
2850.7520.62-1.884.3649
2940.255.6231.884.3698
30-12.251.88-28.124.3349
3115.75-35.62-73.124.3249
321.751.8831.884.31147
3347.25-5.6220.624.30246
34-29.7520.62-46.884.2849
3540.25-58.12-5.624.2798
3647.2524.389.384.2649
3722.75-58.12-50.624.2349
3812.2580.62-5.624.2149
3954.255.6250.624.1998
40-26.25-13.121.884.1849
41-47.2531.88-28.124.1649
42-5.2580.6231.884.14147
4312.2524.38-35.624.1298
4422.75-54.38-43.124.1249
45-22.75-5.62-20.624.1249
46-5.25-16.88-39.384.1298
47-5.25-9.3831.884.1149
48-40.25-16.88-65.624.1149
49-5.2584.381.884.1049
5029.75-1.8824.384.0849
511.75-1.88-76.884.0798
52-5.25-28.12-76.884.0798
53-54.259.38-16.884.0649
5433.2524.38-43.124.0698
551.75-28.12-76.884.0449
5615.75-16.8846.884.0049
5750.7524.38-35.624.00147
58-15.7576.8831.883.9949
59-40.2561.885.623.9849
6019.25-46.88-35.623.9849
6136.7531.88-39.383.98246
62-36.75-1.88-20.623.9798
6333.25-35.62-35.623.9798
6412.2580.6235.623.9798
6540.2528.12-43.123.9749
66-47.2524.3820.623.9649
67-26.25-24.3820.623.9649
6819.2516.88-46.883.9449
691.75-5.62-80.623.9498
7054.251.8843.123.9349
7150.7550.6220.623.9349
7222.75-1.889.383.9249
73-19.2550.6213.123.9249
74-40.2569.3813.123.9249
75-8.7524.38-35.623.8698
7619.2580.621.883.8698
7722.75-43.12-61.883.8698
78-33.25-65.62-16.883.8549
79-8.7528.1254.383.85196
8040.25-39.3858.123.8449
8119.25-1.88-1.883.8449
8212.25-61.889.383.8349
8326.2513.12-39.383.8349
84-40.25-9.38-5.623.8249
85-26.2531.88-39.383.8149
86-8.7584.3820.623.8198
87-5.255.62-69.383.8149
88-1.75-31.889.383.8049
89-26.25-80.62-5.623.7849
9019.25-16.88-54.383.7849
91-1.7573.1235.623.7749
9215.7550.62-9.383.7749
9333.25-5.62-1.883.7649
9415.7588.1216.883.7649
95-36.7565.6220.623.7698
96-1.75-35.62-65.623.7649
97-5.2580.6213.123.7549
98-47.25-5.62-28.123.7549
99-26.2516.8828.123.7549
10029.7576.8813.123.7449
10140.25-1.8861.883.74246
102-64.75-5.625.623.7398
1031.7539.38-16.883.7249
104-5.251.88-76.883.7249
105-29.75-69.389.383.7298
10643.75-31.88-13.123.7149
10740.25-43.12-5.623.7149
10843.75-61.885.623.7149
109-1.75-39.385.623.7098
11040.25-24.38-35.623.6949
11126.25-50.62-54.383.6849
11233.25-39.3824.383.6749
11329.75-9.389.383.6649
1145.2513.1231.883.66147
115-22.75-39.38-54.383.6549
116-50.75-13.125.623.6549
117-12.25-43.12-13.123.6449
118-1.75-46.88-1.883.6349
11957.75-24.385.623.6349
12019.2554.3850.623.6249
12133.25-39.38-20.623.6249
12229.75-46.88-61.883.6249
12340.2513.12-39.383.6149
124-22.7558.12-20.623.6198
12550.75-16.8846.883.6149
12615.755.629.383.6049
12729.75-50.62-50.623.6049
128-29.7531.88-9.383.6049
129-50.75-1.8820.623.6049
13015.7588.129.383.5998
131-43.75-24.3835.623.5949
132-19.259.38-35.623.5849
133-29.7513.1261.883.5898
134-33.2539.3854.383.5849
135-19.25-1.88-35.623.5849
136-8.7516.88-43.123.5649
13757.7516.8816.883.5649
1388.751.8824.383.5649
139-12.25-50.62-50.623.5649
14015.75-28.12-54.383.5649
14133.255.6216.883.5649
142-40.2543.12-31.883.5549
143-19.2520.6224.383.5549
1441.7565.6246.883.5549
145-1.75-13.12-54.383.5498
14633.25-39.38-43.123.5349
147-12.2588.129.383.5349
14833.25-69.38-13.123.5349
14922.75-35.62-9.383.5349
15026.25-13.1213.123.5349
15133.2524.3861.883.5249
1521.7576.8816.883.5249
153-15.75-9.3828.123.5149
154-5.25-1.88-28.123.5198
1551.75-9.381.883.5149
156-33.2569.3820.623.5198
1575.259.38-58.123.5049
15815.7573.1220.623.5049
159-36.7569.3816.883.5049
16015.75-76.88-16.883.4949
161-5.2584.389.383.4949
16243.75-9.38-16.883.4949
16357.75-20.6228.123.4949
164-47.2520.6243.123.4849
16533.25-50.62-20.623.4849
166-15.75-65.625.623.4749
16722.7543.12-9.383.4749
16850.75-39.38-16.883.4749
16933.25-20.6243.123.4749
170-22.7554.38-13.123.4749
17119.25-5.62-35.623.4749
172-1.75-13.1231.883.4749
1735.25-1.885.623.4798
174-19.2531.88-28.123.4649
17540.25-16.889.383.4649
17622.75-20.6220.623.4649
1778.75-9.38-76.883.4549
178-19.25-5.6216.883.4549
179-57.75-9.38-13.123.4549
18050.75-16.8858.123.4549
18157.75-13.1239.383.4549
182-26.25-1.88-9.383.4549
18315.7546.88-20.623.4549
1845.25-65.6220.623.4449
185-12.25-50.62-13.123.4449
18615.7524.3869.383.4449
187-22.7539.3831.883.4449
18822.75-20.62-5.623.4349
1891.75-5.62-20.623.4349
19029.7558.12-16.883.4349
19154.251.8835.623.4398
192-26.25-28.1231.883.4249
193-33.25-58.12-31.883.4149
1941.7516.88-20.623.4149
19526.25-16.88-35.623.4149
196-22.75-88.12-1.883.4049
19712.251.88-69.383.4049
1981.7535.62-24.383.4049
19933.25-31.88-43.123.3949
200-8.7520.6231.883.3949
201-12.25-1.88-58.123.3949
20257.75-31.8846.883.3949
203-19.2573.1231.883.3849
20436.751.8865.623.3849
205-12.251.889.383.3849
206-8.759.3865.623.3849
207-57.75-5.62-1.883.3849
208-26.2543.12-28.123.3849
20940.2569.3816.883.3849
210-8.75-5.62-58.123.3749
21147.2516.88-20.623.3749
212-8.7524.3843.123.3749
213-5.2539.3858.123.3749
21412.25-35.62-24.383.3749
2158.7546.88-20.623.3749
216-1.751.8813.123.3749
21715.75-50.62-35.623.3649
218-15.751.8828.123.3649
21926.251.8824.383.3649
22029.75-1.8813.123.3549
22115.75-39.3824.383.3449
22229.759.3816.883.3449
223-33.2573.129.383.3449
224-1.75-13.12-5.623.3349
225-26.259.3820.623.3249
226-26.2516.88-16.883.3249
22719.25-5.6261.883.3249
22819.25-28.1273.123.3149
2298.7576.8816.883.3149
230-1.75-54.38-61.883.3049
2315.2539.38-20.623.3049
232-43.7516.8839.383.3049
233-61.25-46.889.383.3049
23412.25-31.88-46.883.3049
235-33.2528.12-39.383.2949
23619.2516.88-35.623.2949

Built using Nilearn. Source code on GitHub. File bugs & feature requests here.


In a jupyter notebook, the report will be automatically inserted, as above. We have several other ways to access the report:

# report.save_as_html('report.html')
# report.open_in_browser()

Build the decoding pipeline#

To define the decoding pipeline we use Decoder object, we choose :

  • a prediction model, here a Support Vector Classifier, with a linear kernel

  • the mask to use, here a ventral temporal ROI in the visual cortex

  • although it usually helps to decode better, z-maps time series don’t need to be rescaled to a 0 mean, variance of 1 so we use standardize=False.

  • we use univariate feature selection to reduce the dimension of the problem keeping only 5% of voxels which are most informative.

  • a cross-validation scheme, here we use LeaveOneGroupOut cross-validation on the sessions which corresponds to a leave-one-session-out

We fit directly this pipeline on the Niimgs outputs of the GLM, with corresponding conditions labels and session labels (for the cross validation).

from nilearn.decoding import Decoder
from sklearn.model_selection import LeaveOneGroupOut
decoder = Decoder(estimator='svc', mask=haxby_dataset.mask, standardize=False,
                  screening_percentile=5, cv=LeaveOneGroupOut())
decoder.fit(z_maps, conditions_label, groups=session_label)

# Return the corresponding mean prediction accuracy compared to chance

classification_accuracy = np.mean(list(decoder.cv_scores_.values()))
chance_level = 1. / len(np.unique(conditions))
print('Classification accuracy: {:.4f} / Chance level: {}'.format(
    classification_accuracy, chance_level))
/home/yasmin/nilearn/nilearn/nilearn/image/resampling.py:453: UserWarning:

The provided image has no sform in its header. Please check the provided file. Results may not be as expected.

Classification accuracy: 0.7173 / Chance level: 0.125

Total running time of the script: ( 3 minutes 25.417 seconds)

Estimated memory usage: 1123 MB

Gallery generated by Sphinx-Gallery